fix PREN export and infer (#7833)
parent
077196f3cb
commit
eeef62b3c6
|
@ -21,124 +21,165 @@ from __future__ import division
|
|||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
from collections import namedtuple
|
||||
import re
|
||||
import collections
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
__all__ = ['EfficientNetb3']
|
||||
|
||||
GlobalParams = collections.namedtuple('GlobalParams', [
|
||||
'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes',
|
||||
'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth',
|
||||
'drop_connect_rate', 'image_size'
|
||||
])
|
||||
|
||||
class EffB3Params:
|
||||
BlockArgs = collections.namedtuple('BlockArgs', [
|
||||
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
|
||||
'expand_ratio', 'id_skip', 'stride', 'se_ratio'
|
||||
])
|
||||
|
||||
|
||||
class BlockDecoder:
|
||||
@staticmethod
|
||||
def get_global_params():
|
||||
"""
|
||||
The fllowing are efficientnetb3's arch superparams, but to fit for scene
|
||||
text recognition task, the resolution(image_size) here is changed
|
||||
from 300 to 64.
|
||||
"""
|
||||
GlobalParams = namedtuple('GlobalParams', [
|
||||
'drop_connect_rate', 'width_coefficient', 'depth_coefficient',
|
||||
'depth_divisor', 'image_size'
|
||||
])
|
||||
global_params = GlobalParams(
|
||||
drop_connect_rate=0.3,
|
||||
width_coefficient=1.2,
|
||||
depth_coefficient=1.4,
|
||||
depth_divisor=8,
|
||||
image_size=64)
|
||||
return global_params
|
||||
def _decode_block_string(block_string):
|
||||
assert isinstance(block_string, str)
|
||||
|
||||
ops = block_string.split('_')
|
||||
options = {}
|
||||
for op in ops:
|
||||
splits = re.split(r'(\d.*)', op)
|
||||
if len(splits) >= 2:
|
||||
key, value = splits[:2]
|
||||
options[key] = value
|
||||
|
||||
assert (('s' in options and len(options['s']) == 1) or
|
||||
(len(options['s']) == 2 and options['s'][0] == options['s'][1]))
|
||||
|
||||
return BlockArgs(
|
||||
kernel_size=int(options['k']),
|
||||
num_repeat=int(options['r']),
|
||||
input_filters=int(options['i']),
|
||||
output_filters=int(options['o']),
|
||||
expand_ratio=int(options['e']),
|
||||
id_skip=('noskip' not in block_string),
|
||||
se_ratio=float(options['se']) if 'se' in options else None,
|
||||
stride=[int(options['s'][0])])
|
||||
|
||||
@staticmethod
|
||||
def get_block_params():
|
||||
BlockParams = namedtuple('BlockParams', [
|
||||
'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
|
||||
'expand_ratio', 'id_skip', 'se_ratio', 'stride'
|
||||
])
|
||||
block_params = [
|
||||
BlockParams(3, 1, 32, 16, 1, True, 0.25, 1),
|
||||
BlockParams(3, 2, 16, 24, 6, True, 0.25, 2),
|
||||
BlockParams(5, 2, 24, 40, 6, True, 0.25, 2),
|
||||
BlockParams(3, 3, 40, 80, 6, True, 0.25, 2),
|
||||
BlockParams(5, 3, 80, 112, 6, True, 0.25, 1),
|
||||
BlockParams(5, 4, 112, 192, 6, True, 0.25, 2),
|
||||
BlockParams(3, 1, 192, 320, 6, True, 0.25, 1)
|
||||
]
|
||||
return block_params
|
||||
def decode(string_list):
|
||||
assert isinstance(string_list, list)
|
||||
blocks_args = []
|
||||
for block_string in string_list:
|
||||
blocks_args.append(BlockDecoder._decode_block_string(block_string))
|
||||
return blocks_args
|
||||
|
||||
|
||||
def efficientnet(width_coefficient=None,
|
||||
depth_coefficient=None,
|
||||
dropout_rate=0.2,
|
||||
drop_connect_rate=0.2,
|
||||
image_size=None,
|
||||
num_classes=1000):
|
||||
blocks_args = [
|
||||
'r1_k3_s11_e1_i32_o16_se0.25',
|
||||
'r2_k3_s22_e6_i16_o24_se0.25',
|
||||
'r2_k5_s22_e6_i24_o40_se0.25',
|
||||
'r3_k3_s22_e6_i40_o80_se0.25',
|
||||
'r3_k5_s11_e6_i80_o112_se0.25',
|
||||
'r4_k5_s22_e6_i112_o192_se0.25',
|
||||
'r1_k3_s11_e6_i192_o320_se0.25',
|
||||
]
|
||||
blocks_args = BlockDecoder.decode(blocks_args)
|
||||
|
||||
global_params = GlobalParams(
|
||||
batch_norm_momentum=0.99,
|
||||
batch_norm_epsilon=1e-3,
|
||||
dropout_rate=dropout_rate,
|
||||
drop_connect_rate=drop_connect_rate,
|
||||
num_classes=num_classes,
|
||||
width_coefficient=width_coefficient,
|
||||
depth_coefficient=depth_coefficient,
|
||||
depth_divisor=8,
|
||||
min_depth=None,
|
||||
image_size=image_size, )
|
||||
return blocks_args, global_params
|
||||
|
||||
|
||||
class EffUtils:
|
||||
@staticmethod
|
||||
def round_filters(filters, global_params):
|
||||
"""Calculate and round number of filters based on depth multiplier."""
|
||||
""" Calculate and round number of filters based on depth multiplier. """
|
||||
multiplier = global_params.width_coefficient
|
||||
if not multiplier:
|
||||
return filters
|
||||
divisor = global_params.depth_divisor
|
||||
min_depth = global_params.min_depth
|
||||
filters *= multiplier
|
||||
new_filters = int(filters + divisor / 2) // divisor * divisor
|
||||
min_depth = min_depth or divisor
|
||||
new_filters = max(min_depth,
|
||||
int(filters + divisor / 2) // divisor * divisor)
|
||||
if new_filters < 0.9 * filters:
|
||||
new_filters += divisor
|
||||
return int(new_filters)
|
||||
|
||||
@staticmethod
|
||||
def round_repeats(repeats, global_params):
|
||||
"""Round number of filters based on depth multiplier."""
|
||||
""" Round number of filters based on depth multiplier. """
|
||||
multiplier = global_params.depth_coefficient
|
||||
if not multiplier:
|
||||
return repeats
|
||||
return int(math.ceil(multiplier * repeats))
|
||||
|
||||
|
||||
class ConvBlock(nn.Layer):
|
||||
def __init__(self, block_params):
|
||||
super(ConvBlock, self).__init__()
|
||||
self.block_args = block_params
|
||||
self.has_se = (self.block_args.se_ratio is not None) and \
|
||||
(0 < self.block_args.se_ratio <= 1)
|
||||
self.id_skip = block_params.id_skip
|
||||
class MbConvBlock(nn.Layer):
|
||||
def __init__(self, block_args):
|
||||
super(MbConvBlock, self).__init__()
|
||||
self._block_args = block_args
|
||||
self.has_se = (self._block_args.se_ratio is not None) and \
|
||||
(0 < self._block_args.se_ratio <= 1)
|
||||
self.id_skip = block_args.id_skip
|
||||
|
||||
# expansion phase
|
||||
self.input_filters = self.block_args.input_filters
|
||||
output_filters = \
|
||||
self.block_args.input_filters * self.block_args.expand_ratio
|
||||
if self.block_args.expand_ratio != 1:
|
||||
self.expand_conv = nn.Conv2D(
|
||||
self.input_filters, output_filters, 1, bias_attr=False)
|
||||
self.bn0 = nn.BatchNorm(output_filters)
|
||||
self.inp = self._block_args.input_filters
|
||||
oup = self._block_args.input_filters * self._block_args.expand_ratio
|
||||
if self._block_args.expand_ratio != 1:
|
||||
self._expand_conv = nn.Conv2D(self.inp, oup, 1, bias_attr=False)
|
||||
self._bn0 = nn.BatchNorm(oup)
|
||||
|
||||
# depthwise conv phase
|
||||
k = self.block_args.kernel_size
|
||||
s = self.block_args.stride
|
||||
self.depthwise_conv = nn.Conv2D(
|
||||
output_filters,
|
||||
output_filters,
|
||||
groups=output_filters,
|
||||
k = self._block_args.kernel_size
|
||||
s = self._block_args.stride
|
||||
if isinstance(s, list):
|
||||
s = s[0]
|
||||
self._depthwise_conv = nn.Conv2D(
|
||||
oup,
|
||||
oup,
|
||||
groups=oup,
|
||||
kernel_size=k,
|
||||
stride=s,
|
||||
padding='same',
|
||||
bias_attr=False)
|
||||
self.bn1 = nn.BatchNorm(output_filters)
|
||||
self._bn1 = nn.BatchNorm(oup)
|
||||
|
||||
# squeeze and excitation layer, if desired
|
||||
if self.has_se:
|
||||
num_squeezed_channels = max(1,
|
||||
int(self.block_args.input_filters *
|
||||
self.block_args.se_ratio))
|
||||
self.se_reduce = nn.Conv2D(output_filters, num_squeezed_channels, 1)
|
||||
self.se_expand = nn.Conv2D(num_squeezed_channels, output_filters, 1)
|
||||
int(self._block_args.input_filters *
|
||||
self._block_args.se_ratio))
|
||||
self._se_reduce = nn.Conv2D(oup, num_squeezed_channels, 1)
|
||||
self._se_expand = nn.Conv2D(num_squeezed_channels, oup, 1)
|
||||
|
||||
# output phase
|
||||
self.final_oup = self.block_args.output_filters
|
||||
self.project_conv = nn.Conv2D(
|
||||
output_filters, self.final_oup, 1, bias_attr=False)
|
||||
self.bn2 = nn.BatchNorm(self.final_oup)
|
||||
self.swish = nn.Swish()
|
||||
# output phase and some util class
|
||||
self.final_oup = self._block_args.output_filters
|
||||
self._project_conv = nn.Conv2D(oup, self.final_oup, 1, bias_attr=False)
|
||||
self._bn2 = nn.BatchNorm(self.final_oup)
|
||||
self._swish = nn.Swish()
|
||||
|
||||
def drop_connect(self, inputs, p, training):
|
||||
def _drop_connect(self, inputs, p, training):
|
||||
if not training:
|
||||
return inputs
|
||||
|
||||
batch_size = inputs.shape[0]
|
||||
keep_prob = 1 - p
|
||||
random_tensor = keep_prob
|
||||
|
@ -151,22 +192,23 @@ class ConvBlock(nn.Layer):
|
|||
def forward(self, inputs, drop_connect_rate=None):
|
||||
# expansion and depthwise conv
|
||||
x = inputs
|
||||
if self.block_args.expand_ratio != 1:
|
||||
x = self.swish(self.bn0(self.expand_conv(inputs)))
|
||||
x = self.swish(self.bn1(self.depthwise_conv(x)))
|
||||
if self._block_args.expand_ratio != 1:
|
||||
x = self._swish(self._bn0(self._expand_conv(inputs)))
|
||||
x = self._swish(self._bn1(self._depthwise_conv(x)))
|
||||
|
||||
# squeeze and excitation
|
||||
if self.has_se:
|
||||
x_squeezed = F.adaptive_avg_pool2d(x, 1)
|
||||
x_squeezed = self.se_expand(self.swish(self.se_reduce(x_squeezed)))
|
||||
x_squeezed = self._se_expand(
|
||||
self._swish(self._se_reduce(x_squeezed)))
|
||||
x = F.sigmoid(x_squeezed) * x
|
||||
x = self.bn2(self.project_conv(x))
|
||||
x = self._bn2(self._project_conv(x))
|
||||
|
||||
# skip conntection and drop connect
|
||||
if self.id_skip and self.block_args.stride == 1 and \
|
||||
self.input_filters == self.final_oup:
|
||||
if self.id_skip and self._block_args.stride == 1 and \
|
||||
self.inp == self.final_oup:
|
||||
if drop_connect_rate:
|
||||
x = self.drop_connect(
|
||||
x = self._drop_connect(
|
||||
x, p=drop_connect_rate, training=self.training)
|
||||
x = x + inputs
|
||||
return x
|
||||
|
@ -175,54 +217,63 @@ class ConvBlock(nn.Layer):
|
|||
class EfficientNetb3_PREN(nn.Layer):
|
||||
def __init__(self, in_channels):
|
||||
super(EfficientNetb3_PREN, self).__init__()
|
||||
self.blocks_params = EffB3Params.get_block_params()
|
||||
self.global_params = EffB3Params.get_global_params()
|
||||
"""
|
||||
the fllowing are efficientnetb3's superparams,
|
||||
they means efficientnetb3 network's width, depth, resolution and
|
||||
dropout respectively, to fit for text recognition task, the resolution
|
||||
here is changed from 300 to 64.
|
||||
"""
|
||||
w, d, s, p = 1.2, 1.4, 64, 0.3
|
||||
self._blocks_args, self._global_params = efficientnet(
|
||||
width_coefficient=w,
|
||||
depth_coefficient=d,
|
||||
dropout_rate=p,
|
||||
image_size=s)
|
||||
self.out_channels = []
|
||||
# stem
|
||||
stem_channels = EffUtils.round_filters(32, self.global_params)
|
||||
self.conv_stem = nn.Conv2D(
|
||||
in_channels, stem_channels, 3, 2, padding='same', bias_attr=False)
|
||||
self.bn0 = nn.BatchNorm(stem_channels)
|
||||
out_channels = EffUtils.round_filters(32, self._global_params)
|
||||
self._conv_stem = nn.Conv2D(
|
||||
in_channels, out_channels, 3, 2, padding='same', bias_attr=False)
|
||||
self._bn0 = nn.BatchNorm(out_channels)
|
||||
|
||||
self.blocks = []
|
||||
# build blocks
|
||||
self._blocks = []
|
||||
# to extract three feature maps for fpn based on efficientnetb3 backbone
|
||||
self.concerned_block_idxes = [7, 17, 25]
|
||||
concerned_idx = 0
|
||||
for i, block_params in enumerate(self.blocks_params):
|
||||
block_params = block_params._replace(
|
||||
input_filters=EffUtils.round_filters(block_params.input_filters,
|
||||
self.global_params),
|
||||
output_filters=EffUtils.round_filters(
|
||||
block_params.output_filters, self.global_params),
|
||||
num_repeat=EffUtils.round_repeats(block_params.num_repeat,
|
||||
self.global_params))
|
||||
self.blocks.append(
|
||||
self.add_sublayer("{}-0".format(i), ConvBlock(block_params)))
|
||||
concerned_idx += 1
|
||||
if concerned_idx in self.concerned_block_idxes:
|
||||
self.out_channels.append(block_params.output_filters)
|
||||
if block_params.num_repeat > 1:
|
||||
block_params = block_params._replace(
|
||||
input_filters=block_params.output_filters, stride=1)
|
||||
for j in range(block_params.num_repeat - 1):
|
||||
self.blocks.append(
|
||||
self.add_sublayer('{}-{}'.format(i, j + 1),
|
||||
ConvBlock(block_params)))
|
||||
concerned_idx += 1
|
||||
if concerned_idx in self.concerned_block_idxes:
|
||||
self.out_channels.append(block_params.output_filters)
|
||||
self._concerned_block_idxes = [7, 17, 25]
|
||||
_concerned_idx = 0
|
||||
for i, block_args in enumerate(self._blocks_args):
|
||||
block_args = block_args._replace(
|
||||
input_filters=EffUtils.round_filters(block_args.input_filters,
|
||||
self._global_params),
|
||||
output_filters=EffUtils.round_filters(block_args.output_filters,
|
||||
self._global_params),
|
||||
num_repeat=EffUtils.round_repeats(block_args.num_repeat,
|
||||
self._global_params))
|
||||
self._blocks.append(
|
||||
self.add_sublayer(f"{i}-0", MbConvBlock(block_args)))
|
||||
_concerned_idx += 1
|
||||
if _concerned_idx in self._concerned_block_idxes:
|
||||
self.out_channels.append(block_args.output_filters)
|
||||
if block_args.num_repeat > 1:
|
||||
block_args = block_args._replace(
|
||||
input_filters=block_args.output_filters, stride=1)
|
||||
for j in range(block_args.num_repeat - 1):
|
||||
self._blocks.append(
|
||||
self.add_sublayer(f'{i}-{j+1}', MbConvBlock(block_args)))
|
||||
_concerned_idx += 1
|
||||
if _concerned_idx in self._concerned_block_idxes:
|
||||
self.out_channels.append(block_args.output_filters)
|
||||
|
||||
self.swish = nn.Swish()
|
||||
self._swish = nn.Swish()
|
||||
|
||||
def forward(self, inputs):
|
||||
outs = []
|
||||
|
||||
x = self.swish(self.bn0(self.conv_stem(inputs)))
|
||||
for idx, block in enumerate(self.blocks):
|
||||
drop_connect_rate = self.global_params.drop_connect_rate
|
||||
x = self._swish(self._bn0(self._conv_stem(inputs)))
|
||||
for idx, block in enumerate(self._blocks):
|
||||
drop_connect_rate = self._global_params.drop_connect_rate
|
||||
if drop_connect_rate:
|
||||
drop_connect_rate *= float(idx) / len(self.blocks)
|
||||
drop_connect_rate *= float(idx) / len(self._blocks)
|
||||
x = block(x, drop_connect_rate=drop_connect_rate)
|
||||
if idx in self.concerned_block_idxes:
|
||||
if idx in self._concerned_block_idxes:
|
||||
outs.append(x)
|
||||
return outs
|
||||
|
|
|
@ -562,7 +562,8 @@ class PRENLabelDecode(BaseRecLabelDecode):
|
|||
return result_list
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
preds = preds.numpy()
|
||||
if isinstance(preds, paddle.Tensor):
|
||||
preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob)
|
||||
|
|
|
@ -77,7 +77,7 @@ def export_single_model(model,
|
|||
elif arch_config["algorithm"] == "PREN":
|
||||
other_shape = [
|
||||
paddle.static.InputSpec(
|
||||
shape=[None, 3, 64, 512], dtype="float32"),
|
||||
shape=[None, 3, 64, 256], dtype="float32"),
|
||||
]
|
||||
model = to_static(model, input_spec=other_shape)
|
||||
elif arch_config["model_type"] == "sr":
|
||||
|
|
|
@ -100,6 +100,8 @@ class TextRecognizer(object):
|
|||
"use_space_char": args.use_space_char,
|
||||
"rm_symbol": True
|
||||
}
|
||||
elif self.rec_algorithm == "PREN":
|
||||
postprocess_params = {'name': 'PRENLabelDecode'}
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
||||
utility.create_predictor(args, 'rec', logger)
|
||||
|
@ -384,7 +386,7 @@ class TextRecognizer(object):
|
|||
self.rec_image_shape)
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
norm_img_batch.append(norm_img)
|
||||
elif self.rec_algorithm == "VisionLAN":
|
||||
elif self.rec_algorithm in ["VisionLAN", "PREN"]:
|
||||
norm_img = self.resize_norm_img_vl(img_list[indices[ino]],
|
||||
self.rec_image_shape)
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
|
|
Loading…
Reference in New Issue