diff --git a/README.md b/README.md
index 75828c3589..f468da74d8 100644
--- a/README.md
+++ b/README.md
@@ -32,10 +32,15 @@ PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools
- [Table Recognition](./ppstructure/table) optimization: 3 optimization strategies are designed, and the model accuracy is improved by 6% under comparable time consumption;
- [Key Information Extraction](./ppstructure/kie) optimization:a visual-independent model structure is designed, the accuracy of semantic entity recognition is increased by 2.8%, and the accuracy of relation extraction is increased by 9.1%.
-- **🔥2022.7 Release [OCR scene application collection](./applications/README_en.md)**
+- **🔥2022.8 Release [OCR scene application collection](./applications/README_en.md)**
- Release **9 vertical models** such as digital tube, LCD screen, license plate, handwriting recognition model, high-precision SVTR model, etc, covering the main OCR vertical applications in general, manufacturing, finance, and transportation industries.
-- **🔥2022.5.9 Release PaddleOCR [release/2.5](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.5)**
+- **2022.8 Add implementation of [8 cutting-edge algorithms](doc/doc_en/algorithm_overview_en.md)**
+ - Text Detection: [FCENet](doc/doc_en/algorithm_det_fcenet_en.md), [DB++](doc/doc_en/algorithm_det_db_en.md)
+ - Text Recognition: [ViTSTR](doc/doc_en/algorithm_rec_vitstr_en.md), [ABINet](doc/doc_en/algorithm_rec_abinet_en.md), [VisionLAN](doc/doc_en/algorithm_rec_visionlan_en.md), [SPIN](doc/doc_en/algorithm_rec_spin_en.md), [RobustScanner](doc/doc_en/algorithm_rec_robustscanner_en.md)
+ - Table Recognition: [TableMaster](doc/doc_en/algorithm_table_master_en.md)
+
+- **2022.5.9 Release PaddleOCR [release/2.5](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.5)**
- Release [PP-OCRv3](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv3): With comparable speed, the effect of Chinese scene is further improved by 5% compared with PP-OCRv2, the effect of English scene is improved by 11%, and the average recognition accuracy of 80 language multilingual models is improved by more than 5%.
- Release [PPOCRLabelv2](./PPOCRLabel): Add the annotation function for table recognition task, key information extraction task and irregular text image.
- Release interactive e-book [*"Dive into OCR"*](./doc/doc_en/ocr_book_en.md), covers the cutting-edge theory and code practice of OCR full stack technology.
diff --git a/README_ch.md b/README_ch.md
index 8ffa7a3755..34c5837beb 100755
--- a/README_ch.md
+++ b/README_ch.md
@@ -28,14 +28,19 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
## 近期更新
- **🔥2022.8.24 发布 PaddleOCR [release/2.6](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.6)**
- - 发布[PP-Structurev2](./ppstructure/),系统功能性能全面升级,适配中文场景,新增支持[版面复原](./ppstructure/recovery),支持**一行命令完成PDF转Word**;
- - [版面分析](./ppstructure/layout)模型优化:模型存储减少95%,速度提升11倍,平均CPU耗时仅需41ms;
- - [表格识别](./ppstructure/table)模型优化:设计3大优化策略,预测耗时不变情况下,模型精度提升6%;
- - [关键信息抽取](./ppstructure/kie)模型优化:设计视觉无关模型结构,语义实体识别精度提升2.8%,关系抽取精度提升9.1%。
+ - 发布[PP-Structurev2](./ppstructure/README_ch.md),系统功能性能全面升级,适配中文场景,新增支持[版面复原](./ppstructure/recovery/README_ch.md),支持**一行命令完成PDF转Word**;
+ - [版面分析](./ppstructure/layout/README_ch.md)模型优化:模型存储减少95%,速度提升11倍,平均CPU耗时仅需41ms;
+ - [表格识别](./ppstructure/table/README_ch.md)模型优化:设计3大优化策略,预测耗时不变情况下,模型精度提升6%;
+ - [关键信息抽取](./ppstructure/kie/README_ch.md)模型优化:设计视觉无关模型结构,语义实体识别精度提升2.8%,关系抽取精度提升9.1%。
- **🔥2022.8 发布 [OCR场景应用集合](./applications)**
- 包含数码管、液晶屏、车牌、高精度SVTR模型、手写体识别等**9个垂类模型**,覆盖通用,制造、金融、交通行业的主要OCR垂类应用。
+- **2022.8 新增实现[8种前沿算法](doc/doc_ch/algorithm_overview.md)**
+ - 文本检测:[FCENet](doc/doc_ch/algorithm_det_fcenet.md), [DB++](doc/doc_ch/algorithm_det_db.md)
+ - 文本识别:[ViTSTR](doc/doc_ch/algorithm_rec_vitstr.md), [ABINet](doc/doc_ch/algorithm_rec_abinet.md), [VisionLAN](doc/doc_ch/algorithm_rec_visionlan.md), [SPIN](doc/doc_ch/algorithm_rec_spin.md), [RobustScanner](doc/doc_ch/algorithm_rec_robustscanner.md)
+ - 表格识别:[TableMaster](doc/doc_ch/algorithm_table_master.md)
+
- **2022.5.9 发布 PaddleOCR [release/2.5](https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.5)**
- 发布[PP-OCRv3](./doc/doc_ch/ppocr_introduction.md#pp-ocrv3),速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上;
- 发布半自动标注工具[PPOCRLabelv2](./PPOCRLabel):新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能;
diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md
index 858dc02b9d..ecb0e9dfef 100755
--- a/doc/doc_ch/algorithm_overview.md
+++ b/doc/doc_ch/algorithm_overview.md
@@ -24,7 +24,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
### 1.1 文本检测算法
已支持的文本检测算法列表(戳链接获取使用教程):
-- [x] [DB](./algorithm_det_db.md)
+- [x] [DB与DB++](./algorithm_det_db.md)
- [x] [EAST](./algorithm_det_east.md)
- [x] [SAST](./algorithm_det_sast.md)
- [x] [PSENet](./algorithm_det_psenet.md)
@@ -41,6 +41,7 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
+|DB++|ResNet50|90.89%|82.66%|86.58%|[合成数据预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
在Total-text文本检测公开数据集上,算法效果如下:
@@ -129,10 +130,10 @@ PaddleOCR将**持续新增**支持OCR领域前沿算法与模型,**欢迎广
已支持的关键信息抽取算法列表(戳链接获取使用教程):
-- [x] [VI-LayoutXLM](./algorithm_kie_vi_laoutxlm.md)
-- [x] [LayoutLM](./algorithm_kie_laoutxlm.md)
-- [x] [LayoutLMv2](./algorithm_kie_laoutxlm.md)
-- [x] [LayoutXLM](./algorithm_kie_laoutxlm.md)
+- [x] [VI-LayoutXLM](./algorithm_kie_vi_layoutxlm.md)
+- [x] [LayoutLM](./algorithm_kie_layoutxlm.md)
+- [x] [LayoutLMv2](./algorithm_kie_layoutxlm.md)
+- [x] [LayoutXLM](./algorithm_kie_layoutxlm.md)
- [x] [SDMGR](././algorithm_kie_sdmgr.md)
在wildreceipt发票公开数据集上,算法复现效果如下:
diff --git a/doc/doc_en/algorithm_det_db_en.md b/doc/doc_en/algorithm_det_db_en.md
index f5f333a039..fde344c357 100644
--- a/doc/doc_en/algorithm_det_db_en.md
+++ b/doc/doc_en/algorithm_det_db_en.md
@@ -1,4 +1,4 @@
-# DB
+# DB && DB++
- [1. Introduction](#1)
- [2. Environment](#2)
@@ -21,13 +21,23 @@ Paper:
> Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang
> AAAI, 2020
+> [Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion](https://arxiv.org/abs/2202.10304)
+> Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang
+> TPAMI, 2022
+
On the ICDAR2015 dataset, the text detection result is as follows:
|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
| --- | --- | --- | --- | --- | --- | --- |
|DB|ResNet50_vd|[configs/det/det_r50_vd_db.yml](../../configs/det/det_r50_vd_db.yml)|86.41%|78.72%|82.38%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|[configs/det/det_mv3_db.yml](../../configs/det/det_mv3_db.yml)|77.29%|73.08%|75.12%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
+|DB++|ResNet50|[configs/det/det_r50_db++_ic15.yml](../../configs/det/det_r50_db++_ic15.yml)|90.89%|82.66%|86.58%|[pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
+On the TD_TR dataset, the text detection result is as follows:
+
+|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
+| --- | --- | --- | --- | --- | --- | --- |
+|DB++|ResNet50|[configs/det/det_r50_db++_td_tr.yml](../../configs/det/det_r50_db++_td_tr.yml)|92.92%|86.48%|89.58%|[pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_td_tr_train.tar)|
## 2. Environment
@@ -96,4 +106,12 @@ More deployment schemes supported for DB:
pages={11474--11481},
year={2020}
}
-```
\ No newline at end of file
+
+@article{liao2022real,
+ title={Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion},
+ author={Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang},
+ journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
+ year={2022},
+ publisher={IEEE}
+}
+```
diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md
index 5bf569e3e1..bca22f7848 100755
--- a/doc/doc_en/algorithm_overview_en.md
+++ b/doc/doc_en/algorithm_overview_en.md
@@ -22,7 +22,7 @@ Developers are welcome to contribute more algorithms! Please refer to [add new a
### 1.1 Text Detection Algorithms
Supported text detection algorithms (Click the link to get the tutorial):
-- [x] [DB](./algorithm_det_db_en.md)
+- [x] [DB && DB++](./algorithm_det_db_en.md)
- [x] [EAST](./algorithm_det_east_en.md)
- [x] [SAST](./algorithm_det_sast_en.md)
- [x] [PSENet](./algorithm_det_psenet_en.md)
@@ -39,6 +39,7 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|PSE|ResNet50_vd|85.81%|79.53%|82.55%|[trianed model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE|MobileNetV3|82.20%|70.48%|75.89%|[trianed model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|
+|DB++|ResNet50|90.89%|82.66%|86.58%|[pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/ResNet50_dcn_asf_synthtext_pretrained.pdparams)/[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_db%2B%2B_icdar15_train.tar)|
On Total-Text dataset, the text detection result is as follows:
@@ -127,10 +128,10 @@ On the PubTabNet dataset, the algorithm result is as follows:
Supported KIE algorithms (Click the link to get the tutorial):
-- [x] [VI-LayoutXLM](./algorithm_kie_vi_laoutxlm_en.md)
-- [x] [LayoutLM](./algorithm_kie_laoutxlm_en.md)
-- [x] [LayoutLMv2](./algorithm_kie_laoutxlm_en.md)
-- [x] [LayoutXLM](./algorithm_kie_laoutxlm_en.md)
+- [x] [VI-LayoutXLM](./algorithm_kie_vi_layoutxlm_en.md)
+- [x] [LayoutLM](./algorithm_kie_layoutxlm_en.md)
+- [x] [LayoutLMv2](./algorithm_kie_layoutxlm_en.md)
+- [x] [LayoutXLM](./algorithm_kie_layoutxlm_en.md)
- [x] [SDMGR](./algorithm_kie_sdmgr_en.md)
On wildreceipt dataset, the algorithm result is as follows:
diff --git a/ppocr/postprocess/rec_postprocess.py b/ppocr/postprocess/rec_postprocess.py
index f776317006..749060a053 100644
--- a/ppocr/postprocess/rec_postprocess.py
+++ b/ppocr/postprocess/rec_postprocess.py
@@ -24,7 +24,7 @@ class BaseRecLabelDecode(object):
def __init__(self, character_dict_path=None, use_space_char=False):
self.beg_str = "sos"
self.end_str = "eos"
-
+ self.reverse = False
self.character_str = []
if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
@@ -38,6 +38,8 @@ class BaseRecLabelDecode(object):
if use_space_char:
self.character_str.append(" ")
dict_character = list(self.character_str)
+ if 'arabic' in character_dict_path:
+ self.reverse = True
dict_character = self.add_special_char(dict_character)
self.dict = {}
@@ -45,11 +47,6 @@ class BaseRecLabelDecode(object):
self.dict[char] = i
self.character = dict_character
- if 'arabic' in character_dict_path:
- self.reverse = True
- else:
- self.reverse = False
-
def pred_reverse(self, pred):
pred_re = []
c_current = ''
diff --git a/ppstructure/layout/README.md b/ppstructure/layout/README.md
index 01faa7b279..7615953b46 100644
--- a/ppstructure/layout/README.md
+++ b/ppstructure/layout/README.md
@@ -3,21 +3,22 @@ English | [简体中文](README_ch.md)
# Layout analysis
- [1. Introduction](#1-Introduction)
-- [2. Install](#2-Install)
- - [2.1 Install PaddlePaddle](#21-Install-paddlepaddle)
- - [2.2 Install PaddleDetection](#22-Install-paddledetection)
-- [3. Data preparation](#3-Data-preparation)
- - [3.1 English data set](#31-English-data-set)
- - [3.2 More datasets](#32-More-datasets)
-- [4. Start training](#4-Start-training)
- - [4.1 Train](#41-Train)
- - [4.2 FGD Distillation training](#42-FGD-Distillation-training)
-- [5. Model evaluation and prediction](#5-Model-evaluation-and-prediction)
- - [5.1 Indicator evaluation](#51-Indicator-evaluation)
- - [5.2 Test layout analysis results](#52-Test-layout-analysis-results)
-- [6 Model export and inference](#6-Model-export-and-inference)
- - [6.1 Model export](#61-Model-export)
- - [6.2 Model inference](#62-Model-inference)
+- [2. Quick start](#3-Quick-start)
+- [3. Install](#3-Install)
+ - [3.1 Install PaddlePaddle](#31-Install-paddlepaddle)
+ - [3.2 Install PaddleDetection](#32-Install-paddledetection)
+- [4. Data preparation](#4-Data-preparation)
+ - [4.1 English data set](#41-English-data-set)
+ - [4.2 More datasets](#42-More-datasets)
+- [5. Start training](#5-Start-training)
+ - [5.1 Train](#51-Train)
+ - [5.2 FGD Distillation training](#52-FGD-Distillation-training)
+- [6. Model evaluation and prediction](#6-Model-evaluation-and-prediction)
+ - [6.1 Indicator evaluation](#61-Indicator-evaluation)
+ - [6.2 Test layout analysis results](#62-Test-layout-analysis-results)
+- [7 Model export and inference](#7-Model-export-and-inference)
+ - [7.1 Model export](#71-Model-export)
+ - [7.2 Model inference](#72-Model-inference)
## 1. Introduction
@@ -28,11 +29,12 @@ Layout analysis refers to the regional division of documents in the form of pict
+## 2. Quick start
+PP-Structure currently provides layout analysis models in Chinese, English and table documents. For the model link, see [models_list](../docs/models_list_en.md). The whl package is also provided for quick use, see [quickstart](../docs/quickstart_en.md) for details.
+## 3. Install
-## 2. Install
-
-### 2.1. Install PaddlePaddle
+### 3.1. Install PaddlePaddle
- **(1) Install PaddlePaddle**
@@ -47,7 +49,7 @@ python3 -m pip install "paddlepaddle>=2.3" -i https://mirror.baidu.com/pypi/simp
```
For more requirements, please refer to the instructions in the [Install file](https://www.paddlepaddle.org.cn/install/quick)。
-### 2.2. Install PaddleDetection
+### 3.2. Install PaddleDetection
- **(1)Download PaddleDetection Source code**
@@ -62,11 +64,11 @@ cd PaddleDetection
python3 -m pip install -r requirements.txt
```
-## 3. Data preparation
+## 4. Data preparation
If you want to experience the prediction process directly, you can skip data preparation and download the pre-training model.
-### 3.1. English data set
+### 4.1. English data set
Download document analysis data set [PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(Dataset 96G),contains 5 classes:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}`
@@ -141,7 +143,7 @@ The JSON file contains the annotations of all images, and the data is stored in
}
```
-### 3.2. More datasets
+### 4.2. More datasets
We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. data set download links,process to the JSON format of the above annotation file,that is, the training can be conducted in the same way。
@@ -154,7 +156,7 @@ We provide CDLA(Chinese layout analysis), TableBank(Table layout analysis)etc. d
| [DocBank](https://github.com/doc-analysis/DocBank) | Large-scale dataset (500K document pages) constructed using weakly supervised methods for document layout analysis, containing 12 categories:Author, Caption, Date, Equation, Figure, Footer, List, Paragraph, Reference, Section, Table, Title |
-## 4. Start training
+## 5. Start training
Training scripts, evaluation scripts, and prediction scripts are provided, and the PubLayNet pre-training model is used as an example in this section.
@@ -171,7 +173,7 @@ wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_
If the test image is Chinese, the pre-trained model of Chinese CDLA dataset can be downloaded to identify 10 types of document regions:Table, Figure, Figure caption, Table, Table caption, Header, Footer, Reference, Equation,Download the training model and inference model of Model 'picodet_lcnet_x1_0_fgd_layout_cdla' in [layout analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)。If only the table area in the image is detected, you can download the pre-trained model of the table dataset, and download the training model and inference model of the 'picodet_LCnet_x1_0_FGd_layout_table' model in [Layout Analysis model](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/docs/models_list.md)
-### 4.1. Train
+### 5.1. Train
Train:
@@ -247,7 +249,7 @@ After starting training normally, you will see the following log output:
**Note that the configuration file for prediction / evaluation must be consistent with the training.**
-### 4.2. FGD Distillation Training
+### 5.2. FGD Distillation Training
PaddleDetection supports FGD-based [Focal and Global Knowledge Distillation for Detectors]( https://arxiv.org/abs/2111.11837v1) The training process of the target detection model of distillation, FGD distillation is divided into two parts `Focal` and `Global`. `Focal` Distillation separates the foreground and background of the image, allowing the student model to focus on the key pixels of the foreground and background features of the teacher model respectively;` Global`Distillation section reconstructs the relationships between different pixels and transfers them from the teacher to the student to compensate for the global information lost in `Focal`Distillation.
@@ -265,9 +267,9 @@ python3 tools/train.py \
- `-c`: Specify the model configuration file.
- `--slim_config`: Specify the compression policy profile.
-## 5. Model evaluation and prediction
+## 6. Model evaluation and prediction
-### 5.1. Indicator evaluation
+### 6.1. Indicator evaluation
Model parameters in training are saved by default in `output/picodet_ Lcnet_ X1_ 0_ Under the layout` directory. When evaluating indicators, you need to set `weights` to point to the saved parameter file.Assessment datasets can be accessed via `configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` . Modify `EvalDataset` : `img_dir`,`anno_ Path`and`dataset_dir` setting.
@@ -310,7 +312,7 @@ python3 tools/eval.py \
- `--slim_config`: Specify the distillation policy profile.
- `-o weights`: Specify the model path trained by the distillation algorithm.
-### 5.2. Test Layout Analysis Results
+### 6.2. Test Layout Analysis Results
The profile predicted to be used must be consistent with the training, for example, if you pass `python3 tools/train'. Py-c configs/picodet/legacy_ Model/application/layout_ Analysis/picodet_ Lcnet_ X1_ 0_ Layout. Yml` completed the training process for the model.
@@ -343,10 +345,10 @@ python3 tools/infer.py \
```
-## 6. Model Export and Inference
+## 7. Model Export and Inference
-### 6.1 Model Export
+### 7.1 Model Export
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
@@ -385,7 +387,7 @@ python3 tools/export_model.py \
--output_dir=output_inference/
```
-### 6.2 Model inference
+### 7.2 Model inference
Replace model_with the provided inference training model for inference or the FGD distillation training `model_dir`Inference model path, execute the following commands for inference:
diff --git a/ppstructure/layout/README_ch.md b/ppstructure/layout/README_ch.md
index 49c10c7e77..49ddeb70ae 100644
--- a/ppstructure/layout/README_ch.md
+++ b/ppstructure/layout/README_ch.md
@@ -3,21 +3,22 @@
# 版面分析
- [1. 简介](#1-简介)
-- [2. 安装](#2-安装)
- - [2.1 安装PaddlePaddle](#21-安装paddlepaddle)
- - [2.2 安装PaddleDetection](#22-安装paddledetection)
-- [3. 数据准备](#3-数据准备)
- - [3.1 英文数据集](#31-英文数据集)
- - [3.2 更多数据集](#32-更多数据集)
-- [4. 开始训练](#4-开始训练)
- - [4.1 启动训练](#41-启动训练)
- - [4.2 FGD蒸馏训练](#42-FGD蒸馏训练)
-- [5. 模型评估与预测](#5-模型评估与预测)
- - [5.1 指标评估](#51-指标评估)
- - [5.2 测试版面分析结果](#52-测试版面分析结果)
-- [6 模型导出与预测](#6-模型导出与预测)
- - [6.1 模型导出](#61-模型导出)
- - [6.2 模型推理](#62-模型推理)
+- [2. 快速开始](#2-快速开始)
+- [3. 安装](#3-安装)
+ - [3.1 安装PaddlePaddle](#31-安装paddlepaddle)
+ - [3.2 安装PaddleDetection](#32-安装paddledetection)
+- [4. 数据准备](#4-数据准备)
+ - [4.1 英文数据集](#41-英文数据集)
+ - [4.2 更多数据集](#42-更多数据集)
+- [5. 开始训练](#5-开始训练)
+ - [5.1 启动训练](#51-启动训练)
+ - [5.2 FGD蒸馏训练](#52-FGD蒸馏训练)
+- [6. 模型评估与预测](#6-模型评估与预测)
+ - [6.1 指标评估](#61-指标评估)
+ - [6.2 测试版面分析结果](#62-测试版面分析结果)
+- [7 模型导出与预测](#7-模型导出与预测)
+ - [7.1 模型导出](#71-模型导出)
+ - [7.2 模型推理](#72-模型推理)
## 1. 简介
@@ -26,12 +27,14 @@