Update FAQ.md (#10349)

pull/10352/head
shiyutang 2023-07-11 14:36:10 +08:00 committed by GitHub
parent 5128ceaf74
commit fac03876f3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 1 additions and 1 deletions

View File

@ -400,7 +400,7 @@ StyleText的用途主要是提取style_image中的字体、背景等style信
A无论是文字检测还是文字识别骨干网络的选择是预测效果和预测效率的权衡。一般选择更大规模的骨干网络例如ResNet101_vd则检测或识别更准确但预测耗时相应也会增加。而选择更小规模的骨干网络例如MobileNetV3_small_x0_35则预测更快但检测或识别的准确率会大打折扣。幸运的是不同骨干网络的检测或识别效果与在ImageNet数据集图像1000分类任务效果正相关。飞桨图像分类套件PaddleClas汇总了ResNet_vd、Res2Net、HRNet、MobileNetV3、GhostNet等23种系列的分类网络结构在上述图像分类任务的top1识别准确率GPU(V100和T4)和CPU(骁龙855)的预测耗时以及相应的117个预训练模型下载地址。
1文字检测骨干网络的替换主要是确定类似ResNet的4个stages以方便集成后续的类似FPN的检测头。此外对于文字检测问题使用ImageNet训练的分类预训练模型可以加速收敛和效果提升。
1文字检测骨干网络的替换主要是确定类似ResNet的4个stages以方便集成后续的类似FPN的检测头。此外对于文字检测问题使用ImageNet训练的分类预训练模型可以加速收敛和效果提升。
2文字识别的骨干网络的替换需要注意网络宽高stride的下降位置。由于文本识别一般宽高比例很大因此高度下降频率少一些宽度下降频率多一些。可以参考PaddleOCR中MobileNetV3骨干网络的改动。