From fc16c1fca3ecafd098a937f2569ca52beb8edf01 Mon Sep 17 00:00:00 2001 From: Double_V Date: Wed, 28 Jul 2021 15:49:25 +0800 Subject: [PATCH] fix prepare.sh --- tests/prepare.sh | 359 +++++------------------------------------------ 1 file changed, 36 insertions(+), 323 deletions(-) diff --git a/tests/prepare.sh b/tests/prepare.sh index 5a2c54830..5886b2e69 100644 --- a/tests/prepare.sh +++ b/tests/prepare.sh @@ -8,7 +8,6 @@ dataline=$(cat ${FILENAME}) # parser params IFS=$'\n' lines=(${dataline}) - function func_parser_key(){ strs=$1 IFS=":" @@ -23,333 +22,47 @@ function func_parser_value(){ tmp=${array[1]} echo ${tmp} } -function func_set_params(){ - key=$1 - value=$2 - if [ ${key} = "null" ];then - echo " " - elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then - echo " " - else - echo "${key}=${value}" - fi -} -function func_parser_params(){ - strs=$1 - IFS=":" - array=(${strs}) - key=${array[0]} - tmp=${array[1]} - IFS="|" - res="" - for _params in ${tmp[*]}; do - IFS="=" - array=(${_params}) - mode=${array[0]} - value=${array[1]} - if [[ ${mode} = ${MODE} ]]; then - IFS="|" - #echo $(func_set_params "${mode}" "${value}") - echo $value - break - fi - IFS="|" - done - echo ${res} -} -function status_check(){ - last_status=$1 # the exit code - run_command=$2 - run_log=$3 - if [ $last_status -eq 0 ]; then - echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} - else - echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} - fi -} - IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[1]}") -python=$(func_parser_value "${lines[2]}") -gpu_list=$(func_parser_value "${lines[3]}") -train_use_gpu_key=$(func_parser_key "${lines[4]}") -train_use_gpu_value=$(func_parser_value "${lines[4]}") -autocast_list=$(func_parser_value "${lines[5]}") -autocast_key=$(func_parser_key "${lines[5]}") -epoch_key=$(func_parser_key "${lines[6]}") -epoch_num=$(func_parser_params "${lines[6]}") -save_model_key=$(func_parser_key "${lines[7]}") -train_batch_key=$(func_parser_key "${lines[8]}") -train_batch_value=$(func_parser_params "${lines[8]}") -pretrain_model_key=$(func_parser_key "${lines[9]}") -pretrain_model_value=$(func_parser_value "${lines[9]}") -train_model_name=$(func_parser_value "${lines[10]}") -train_infer_img_dir=$(func_parser_value "${lines[11]}") -train_param_key1=$(func_parser_key "${lines[12]}") -train_param_value1=$(func_parser_value "${lines[12]}") trainer_list=$(func_parser_value "${lines[14]}") -trainer_norm=$(func_parser_key "${lines[15]}") -norm_trainer=$(func_parser_value "${lines[15]}") -pact_key=$(func_parser_key "${lines[16]}") -pact_trainer=$(func_parser_value "${lines[16]}") -fpgm_key=$(func_parser_key "${lines[17]}") -fpgm_trainer=$(func_parser_value "${lines[17]}") -distill_key=$(func_parser_key "${lines[18]}") -distill_trainer=$(func_parser_value "${lines[18]}") -trainer_key1=$(func_parser_key "${lines[19]}") -trainer_value1=$(func_parser_value "${lines[19]}") -trainer_key2=$(func_parser_key "${lines[20]}") -trainer_value2=$(func_parser_value "${lines[20]}") -eval_py=$(func_parser_value "${lines[23]}") -eval_key1=$(func_parser_key "${lines[24]}") -eval_value1=$(func_parser_value "${lines[24]}") - -save_infer_key=$(func_parser_key "${lines[27]}") -export_weight=$(func_parser_key "${lines[28]}") -norm_export=$(func_parser_value "${lines[29]}") -pact_export=$(func_parser_value "${lines[30]}") -fpgm_export=$(func_parser_value "${lines[31]}") -distill_export=$(func_parser_value "${lines[32]}") -export_key1=$(func_parser_key "${lines[33]}") -export_value1=$(func_parser_value "${lines[33]}") -export_key2=$(func_parser_key "${lines[34]}") -export_value2=$(func_parser_value "${lines[34]}") - -# parser inference model -infer_model_dir_list=$(func_parser_value "${lines[36]}") -infer_export_list=$(func_parser_value "${lines[37]}") -infer_is_quant=$(func_parser_value "${lines[38]}") -# parser inference -inference_py=$(func_parser_value "${lines[39]}") -use_gpu_key=$(func_parser_key "${lines[40]}") -use_gpu_list=$(func_parser_value "${lines[40]}") -use_mkldnn_key=$(func_parser_key "${lines[41]}") -use_mkldnn_list=$(func_parser_value "${lines[41]}") -cpu_threads_key=$(func_parser_key "${lines[42]}") -cpu_threads_list=$(func_parser_value "${lines[42]}") -batch_size_key=$(func_parser_key "${lines[43]}") -batch_size_list=$(func_parser_value "${lines[43]}") -use_trt_key=$(func_parser_key "${lines[44]}") -use_trt_list=$(func_parser_value "${lines[44]}") -precision_key=$(func_parser_key "${lines[45]}") -precision_list=$(func_parser_value "${lines[45]}") -infer_model_key=$(func_parser_key "${lines[46]}") -image_dir_key=$(func_parser_key "${lines[47]}") -infer_img_dir=$(func_parser_value "${lines[47]}") -save_log_key=$(func_parser_key "${lines[48]}") -benchmark_key=$(func_parser_key "${lines[49]}") -benchmark_value=$(func_parser_value "${lines[49]}") -infer_key1=$(func_parser_key "${lines[50]}") -infer_value1=$(func_parser_value "${lines[50]}") - -LOG_PATH="./tests/output" -mkdir -p ${LOG_PATH} -status_log="${LOG_PATH}/results.log" - - -function func_inference(){ - IFS='|' - _python=$1 - _script=$2 - _model_dir=$3 - _log_path=$4 - _img_dir=$5 - _flag_quant=$6 - # inference - for use_gpu in ${use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then - for use_mkldnn in ${use_mkldnn_list[*]}; do - if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then - continue - fi - for threads in ${cpu_threads_list[*]}; do - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") - set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") - set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") - set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") - set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - done - done - done - elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then - for use_trt in ${use_trt_list[*]}; do - for precision in ${precision_list[*]}; do - if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then - continue - fi - if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then - continue - fi - for batch_size in ${batch_size_list[*]}; do - _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" - set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") - set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") - set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") - set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") - set_precision=$(func_set_params "${precision_key}" "${precision}") - set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 " - eval $command - last_status=${PIPESTATUS[0]} - eval "cat ${_save_log_path}" - status_check $last_status "${command}" "${status_log}" - - done - done - done - else - echo "Does not support hardware other than CPU and GPU Currently!" - fi - done -} - -if [ ${MODE} = "infer" ]; then - GPUID=$3 - if [ ${#GPUID} -le 0 ];then - env=" " - else - env="export CUDA_VISIBLE_DEVICES=${GPUID}" - fi - # set CUDA_VISIBLE_DEVICES - eval $env - export Count=0 - IFS="|" - infer_run_exports=(${infer_export_list}) - infer_quant_flag=(${infer_is_quant}) - for infer_model in ${infer_model_dir_list[*]}; do - # run export - if [ ${infer_run_exports[Count]} != "null" ];then - export_cmd="${python} ${norm_export} ${export_weight}=${infer_model} ${save_infer_key}=${infer_model}" - eval $export_cmd - status_export=$? - if [ ${status_export} = 0 ];then - status_check $status_export "${export_cmd}" "${status_log}" - fi - fi - #run inference - is_quant=${infer_quant_flag[Count]} - echo "is_quant: ${is_quant}" - func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} - Count=$(($Count + 1)) - done +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +MODE=$2 +if [ ${MODE} = "lite_train_infer" ];then + # pretrain lite train data + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar + cd ./train_data/ && tar xf icdar2015_lite.tar + ln -s ./icdar2015_lite ./icdar2015 + cd ../ +elif [ ${MODE} = "whole_train_infer" ];then + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar + cd ./train_data/ && tar xf icdar2015.tar && cd ../ +elif [ ${MODE} = "whole_infer" ];then + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar + cd ./train_data/ && tar xf icdar2015_infer.tar + ln -s ./icdar2015_infer ./icdar2015 + cd ../ + epoch=10 + eval_batch_step=10 else - IFS="|" - export Count=0 - USE_GPU_KEY=(${train_use_gpu_value}) - for gpu in ${gpu_list[*]}; do - use_gpu=${USE_GPU_KEY[Count]} - Count=$(($Count + 1)) - if [ ${gpu} = "-1" ];then - env="" - elif [ ${#gpu} -le 1 ];then - env="export CUDA_VISIBLE_DEVICES=${gpu}" - eval ${env} - elif [ ${#gpu} -le 15 ];then - IFS="," - array=(${gpu}) - env="export CUDA_VISIBLE_DEVICES=${array[0]}" - IFS="|" - else - IFS=";" - array=(${gpu}) - ips=${array[0]} - gpu=${array[1]} - IFS="|" - env=" " - fi - for autocast in ${autocast_list[*]}; do - for trainer in ${trainer_list[*]}; do - flag_quant=False - if [ ${trainer} = ${pact_key} ]; then - run_train=${pact_trainer} - run_export=${pact_export} - flag_quant=True - elif [ ${trainer} = "${fpgm_key}" ]; then - run_train=${fpgm_trainer} - run_export=${fpgm_export} - elif [ ${trainer} = "${distill_key}" ]; then - run_train=${distill_trainer} - run_export=${distill_export} - elif [ ${trainer} = ${trainer_key1} ]; then - run_train=${trainer_value1} - run_export=${export_value1} - elif [[ ${trainer} = ${trainer_key2} ]]; then - run_train=${trainer_value2} - run_export=${export_value2} - else - run_train=${norm_trainer} - run_export=${norm_export} - fi - - if [ ${run_train} = "null" ]; then - continue - fi - - set_autocast=$(func_set_params "${autocast_key}" "${autocast}") - set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") - set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") - set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") - set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") - set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") - save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" - - # load pretrain from norm training if current trainer is pact or fpgm trainer - if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then - set_pretrain="${load_norm_train_model}" - fi - - set_save_model=$(func_set_params "${save_model_key}" "${save_log}") - if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " - elif [ ${#gpu} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" - else # train with multi-machine - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" - fi - # run train - eval "unset CUDA_VISIBLE_DEVICES" - eval $cmd - status_check $? "${cmd}" "${status_log}" - - set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") - # save norm trained models to set pretrain for pact training and fpgm training - if [ ${trainer} = ${trainer_norm} ]; then - load_norm_train_model=${set_eval_pretrain} - fi - # run eval - if [ ${eval_py} != "null" ]; then - set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") - eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" - eval $eval_cmd - status_check $? "${eval_cmd}" "${status_log}" - fi - # run export model - if [ ${run_export} != "null" ]; then - # run export model - save_infer_path="${save_log}" - export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}" - eval $export_cmd - status_check $? "${export_cmd}" "${status_log}" - - #run inference - eval $env - save_infer_path="${save_log}" - func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" - eval "unset CUDA_VISIBLE_DEVICES" - fi - done # done with: for trainer in ${trainer_list[*]}; do - done # done with: for autocast in ${autocast_list[*]}; do - done # done with: for gpu in ${gpu_list[*]}; do -fi # end if [ ${MODE} = "infer" ]; then + rm -rf ./train_data/icdar2015 + if [[ ${model_name} = "ocr_det" ]]; then + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar + eval_model_name="ch_ppocr_mobile_v2.0_det_infer" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar + cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi +fi