# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn from paddle.nn import functional as F class TableAttentionLoss(nn.Layer): def __init__(self, structure_weight=1.0, loc_weight=0.0, **kwargs): super(TableAttentionLoss, self).__init__() self.loss_func = nn.CrossEntropyLoss(weight=None, reduction="none") self.structure_weight = structure_weight self.loc_weight = loc_weight def forward(self, predicts, batch): structure_probs = predicts["structure_probs"] structure_targets = batch[1].astype("int64") structure_targets = structure_targets[:, 1:] structure_probs = paddle.reshape( structure_probs, [-1, structure_probs.shape[-1]] ) structure_targets = paddle.reshape(structure_targets, [-1]) structure_loss = self.loss_func(structure_probs, structure_targets) structure_loss = paddle.mean(structure_loss) * self.structure_weight loc_preds = predicts["loc_preds"] loc_targets = batch[2].astype("float32") loc_targets_mask = batch[3].astype("float32") loc_targets = loc_targets[:, 1:, :] loc_targets_mask = loc_targets_mask[:, 1:, :] loc_loss = ( F.mse_loss(loc_preds * loc_targets_mask, loc_targets) * self.loc_weight ) total_loss = structure_loss + loc_loss return { "loss": total_loss, "structure_loss": structure_loss, "loc_loss": loc_loss, } class SLALoss(nn.Layer): def __init__(self, structure_weight=1.0, loc_weight=0.0, loc_loss="mse", **kwargs): super(SLALoss, self).__init__() self.loss_func = nn.CrossEntropyLoss(weight=None, reduction="mean") self.structure_weight = structure_weight self.loc_weight = loc_weight self.loc_loss = loc_loss self.eps = 1e-12 def forward(self, predicts, batch): structure_probs = predicts["structure_probs"] structure_targets = batch[1].astype("int64") max_len = batch[-2].max().astype("int32") structure_targets = structure_targets[:, 1 : max_len + 2] structure_loss = self.loss_func(structure_probs, structure_targets) structure_loss = paddle.mean(structure_loss) * self.structure_weight loc_preds = predicts["loc_preds"] loc_targets = batch[2].astype("float32") loc_targets_mask = batch[3].astype("float32") loc_targets = loc_targets[:, 1 : max_len + 2] loc_targets_mask = loc_targets_mask[:, 1 : max_len + 2] loc_loss = ( F.smooth_l1_loss( loc_preds * loc_targets_mask, loc_targets * loc_targets_mask, reduction="sum", ) * self.loc_weight ) loc_loss = loc_loss / (loc_targets_mask.sum() + self.eps) total_loss = structure_loss + loc_loss return { "loss": total_loss, "structure_loss": structure_loss, "loc_loss": loc_loss, }