import pytest from paddleocr import TableRecognitionPipelineV2 from ..testing_utils import ( TEST_DATA_DIR, check_simple_inference_result, check_wrapper_simple_inference_param_forwarding, ) @pytest.fixture(scope="module") def table_recognition_v2_pipeline(): return TableRecognitionPipelineV2() @pytest.mark.parametrize( "image_path", [ TEST_DATA_DIR / "table.jpg", ], ) def test_visual_predict(table_recognition_v2_pipeline, image_path): result = table_recognition_v2_pipeline.predict( str(image_path), use_doc_orientation_classify=False, use_doc_unwarping=False ) check_simple_inference_result(result) res = result[0] assert len(res["table_res_list"]) > 0 assert isinstance(res["table_res_list"][0], dict) assert len(res["table_res_list"][0]["cell_box_list"]) > 0 assert isinstance(res["table_res_list"][0]["pred_html"], str) assert isinstance(res["table_res_list"][0]["table_ocr_pred"], dict) @pytest.mark.parametrize( "params", [ {"use_doc_orientation_classify": False}, {"use_doc_unwarping": False}, {"use_layout_detection": False}, {"use_ocr_model": False}, {"text_det_limit_side_len": 640, "text_det_limit_type": "min"}, {"text_det_thresh": 0.5}, {"text_det_box_thresh": 0.3}, {"text_det_unclip_ratio": 3.0}, {"text_rec_score_thresh": 0.5}, ], ) def test_predict_params( monkeypatch, table_recognition_v2_pipeline, params, ): check_wrapper_simple_inference_param_forwarding( monkeypatch, table_recognition_v2_pipeline, "paddlex_pipeline", "dummy_path", params, ) # TODO: Test constructor and other methods