# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import sys import json from PIL import Image import cv2 __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, __dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, ".."))) os.environ["FLAGS_allocator_strategy"] = "auto_growth" import paddle from ppocr.data import create_operators, transform from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.utils.save_load import load_model from ppocr.utils.utility import get_image_file_list import tools.program as program def main(): global_config = config["Global"] # build post process post_process_class = build_post_process(config["PostProcess"], global_config) # sr transform config["Architecture"]["Transform"]["infer_mode"] = True model = build_model(config["Architecture"]) load_model(config, model) # create data ops transforms = [] for op in config["Eval"]["dataset"]["transforms"]: op_name = list(op)[0] if "Label" in op_name: continue elif op_name in ["SRResize"]: op[op_name]["infer_mode"] = True elif op_name == "KeepKeys": op[op_name]["keep_keys"] = ["img_lr"] transforms.append(op) global_config["infer_mode"] = True ops = create_operators(transforms, global_config) save_visual_path = config["Global"].get("save_visual", "infer_result/") if not os.path.exists(os.path.dirname(save_visual_path)): os.makedirs(os.path.dirname(save_visual_path)) model.eval() for file in get_image_file_list(config["Global"]["infer_img"]): logger.info("infer_img: {}".format(file)) img = Image.open(file).convert("RGB") data = {"image_lr": img} batch = transform(data, ops) images = np.expand_dims(batch[0], axis=0) images = paddle.to_tensor(images) preds = model(images) sr_img = preds["sr_img"][0] lr_img = preds["lr_img"][0] fm_sr = (sr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) fm_lr = (lr_img.numpy() * 255).transpose(1, 2, 0).astype(np.uint8) img_name_pure = os.path.split(file)[-1] cv2.imwrite( "{}/sr_{}".format(save_visual_path, img_name_pure), fm_sr[:, :, ::-1] ) logger.info( "The visualized image saved in infer_result/sr_{}".format(img_name_pure) ) logger.info("success!") if __name__ == "__main__": config, device, logger, vdl_writer = program.preprocess() main()