# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import errno import os import pickle import six import json import paddle from ppocr.utils.logging import get_logger from ppocr.utils.network import maybe_download_params __all__ = ["load_model"] def _mkdir_if_not_exist(path, logger): """ mkdir if not exists, ignore the exception when multiprocess mkdir together """ if not os.path.exists(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): logger.warning( "be happy if some process has already created {}".format(path) ) else: raise OSError("Failed to mkdir {}".format(path)) def load_model(config, model, optimizer=None, model_type="det"): """ load model from checkpoint or pretrained_model """ logger = get_logger() global_config = config["Global"] checkpoints = global_config.get("checkpoints") pretrained_model = global_config.get("pretrained_model") best_model_dict = {} is_float16 = False is_nlp_model = model_type == "kie" and config["Architecture"]["algorithm"] not in [ "SDMGR" ] if is_nlp_model is True: # NOTE: for kie model dsitillation, resume training is not supported now if config["Architecture"]["algorithm"] in ["Distillation"]: return best_model_dict checkpoints = config["Architecture"]["Backbone"]["checkpoints"] # load kie method metric if checkpoints: if os.path.exists(os.path.join(checkpoints, "metric.states")): with open(os.path.join(checkpoints, "metric.states"), "rb") as f: states_dict = ( pickle.load(f) if six.PY2 else pickle.load(f, encoding="latin1") ) best_model_dict = states_dict.get("best_model_dict", {}) if "epoch" in states_dict: best_model_dict["start_epoch"] = states_dict["epoch"] + 1 logger.info("resume from {}".format(checkpoints)) if optimizer is not None: if checkpoints[-1] in ["/", "\\"]: checkpoints = checkpoints[:-1] if os.path.exists(checkpoints + ".pdopt"): optim_dict = paddle.load(checkpoints + ".pdopt") optimizer.set_state_dict(optim_dict) else: logger.warning( "{}.pdopt is not exists, params of optimizer is not loaded".format( checkpoints ) ) return best_model_dict if checkpoints: if checkpoints.endswith(".pdparams"): checkpoints = checkpoints.replace(".pdparams", "") assert os.path.exists( checkpoints + ".pdparams" ), "The {}.pdparams does not exists!".format(checkpoints) # load params from trained model params = paddle.load(checkpoints + ".pdparams") state_dict = model.state_dict() new_state_dict = {} for key, value in state_dict.items(): if key not in params: logger.warning( "{} not in loaded params {} !".format(key, params.keys()) ) continue pre_value = params[key] if pre_value.dtype == paddle.float16: is_float16 = True if pre_value.dtype != value.dtype: pre_value = pre_value.astype(value.dtype) if list(value.shape) == list(pre_value.shape): new_state_dict[key] = pre_value else: logger.warning( "The shape of model params {} {} not matched with loaded params shape {} !".format( key, value.shape, pre_value.shape ) ) model.set_state_dict(new_state_dict) if is_float16: logger.info( "The parameter type is float16, which is converted to float32 when loading" ) if optimizer is not None: if os.path.exists(checkpoints + ".pdopt"): optim_dict = paddle.load(checkpoints + ".pdopt") optimizer.set_state_dict(optim_dict) else: logger.warning( "{}.pdopt is not exists, params of optimizer is not loaded".format( checkpoints ) ) if os.path.exists(checkpoints + ".states"): with open(checkpoints + ".states", "rb") as f: states_dict = ( pickle.load(f) if six.PY2 else pickle.load(f, encoding="latin1") ) best_model_dict = states_dict.get("best_model_dict", {}) best_model_dict["acc"] = 0.0 if "epoch" in states_dict: best_model_dict["start_epoch"] = states_dict["epoch"] + 1 logger.info("resume from {}".format(checkpoints)) elif pretrained_model: is_float16 = load_pretrained_params(model, pretrained_model) else: logger.info("train from scratch") best_model_dict["is_float16"] = is_float16 return best_model_dict def load_pretrained_params(model, path): logger = get_logger() path = maybe_download_params(path) if path.endswith(".pdparams"): path = path.replace(".pdparams", "") assert os.path.exists( path + ".pdparams" ), "The {}.pdparams does not exists!".format(path) params = paddle.load(path + ".pdparams") state_dict = model.state_dict() new_state_dict = {} is_float16 = False for k1 in params.keys(): if k1 not in state_dict.keys(): logger.warning("The pretrained params {} not in model".format(k1)) else: if params[k1].dtype == paddle.float16: is_float16 = True if params[k1].dtype != state_dict[k1].dtype: params[k1] = params[k1].astype(state_dict[k1].dtype) if list(state_dict[k1].shape) == list(params[k1].shape): new_state_dict[k1] = params[k1] else: logger.warning( "The shape of model params {} {} not matched with loaded params {} {} !".format( k1, state_dict[k1].shape, k1, params[k1].shape ) ) model.set_state_dict(new_state_dict) if is_float16: logger.info( "The parameter type is float16, which is converted to float32 when loading" ) logger.info("load pretrain successful from {}".format(path)) return is_float16 def save_model( model, optimizer, model_path, logger, config, is_best=False, prefix="ppocr", **kwargs, ): """ save model to the target path """ _mkdir_if_not_exist(model_path, logger) model_prefix = os.path.join(model_path, prefix) if prefix == "best_accuracy": best_model_path = os.path.join(model_path, "best_model") _mkdir_if_not_exist(best_model_path, logger) paddle.save(optimizer.state_dict(), model_prefix + ".pdopt") if prefix == "best_accuracy": paddle.save( optimizer.state_dict(), os.path.join(best_model_path, "model.pdopt") ) is_nlp_model = config["Architecture"]["model_type"] == "kie" and config[ "Architecture" ]["algorithm"] not in ["SDMGR"] if is_nlp_model is not True: paddle.save(model.state_dict(), model_prefix + ".pdparams") metric_prefix = model_prefix if prefix == "best_accuracy": paddle.save( model.state_dict(), os.path.join(best_model_path, "model.pdparams") ) else: # for kie system, we follow the save/load rules in NLP if config["Global"]["distributed"]: arch = model._layers else: arch = model if config["Architecture"]["algorithm"] in ["Distillation"]: arch = arch.Student arch.backbone.model.save_pretrained(model_prefix) metric_prefix = os.path.join(model_prefix, "metric") if prefix == "best_accuracy": arch.backbone.model.save_pretrained(best_model_path) save_model_info = kwargs.pop("save_model_info", False) if save_model_info: with open(os.path.join(model_path, f"{prefix}.info.json"), "w") as f: json.dump(kwargs, f) logger.info("Already save model info in {}".format(model_path)) if prefix != "latest": done_flag = kwargs.pop("done_flag", False) update_train_results(config, prefix, save_model_info, done_flag=done_flag) # save metric and config with open(metric_prefix + ".states", "wb") as f: pickle.dump(kwargs, f, protocol=2) if is_best: logger.info("save best model is to {}".format(model_prefix)) else: logger.info("save model in {}".format(model_prefix)) def update_train_results(config, prefix, metric_info, done_flag=False, last_num=5): if paddle.distributed.get_rank() != 0: return assert last_num >= 1 train_results_path = os.path.join( config["Global"]["save_model_dir"], "train_results.json" ) save_model_tag = ["pdparams", "pdopt", "pdstates"] save_inference_tag = ["inference_config", "pdmodel", "pdiparams", "pdiparams.info"] if os.path.exists(train_results_path): with open(train_results_path, "r") as fp: train_results = json.load(fp) else: train_results = {} train_results["model_name"] = config["Global"]["pdx_model_name"] label_dict_path = os.path.abspath( config["Global"].get("character_dict_path", "") ) if label_dict_path != "": if not os.path.exists(label_dict_path): label_dict_path = "" label_dict_path = label_dict_path train_results["label_dict"] = label_dict_path train_results["train_log"] = "train.log" train_results["visualdl_log"] = "" train_results["config"] = "config.yaml" train_results["models"] = {} for i in range(1, last_num + 1): train_results["models"][f"last_{i}"] = {} train_results["models"]["best"] = {} train_results["done_flag"] = done_flag if "best" in prefix: if "acc" in metric_info["metric"]: metric_score = metric_info["metric"]["acc"] elif "precision" in metric_info["metric"]: metric_score = metric_info["metric"]["precision"] elif "exp_rate" in metric_info["metric"]: metric_score = metric_info["metric"]["exp_rate"] else: raise ValueError("No metric score found.") train_results["models"]["best"]["score"] = metric_score for tag in save_model_tag: train_results["models"]["best"][tag] = os.path.join( prefix, f"{prefix}.{tag}" if tag != "pdstates" else f"{prefix}.states" ) for tag in save_inference_tag: train_results["models"]["best"][tag] = os.path.join( prefix, "inference", f"inference.{tag}" if tag != "inference_config" else "inference.yml", ) else: for i in range(last_num - 1, 0, -1): train_results["models"][f"last_{i + 1}"] = train_results["models"][ f"last_{i}" ].copy() if "acc" in metric_info["metric"]: metric_score = metric_info["metric"]["acc"] elif "precision" in metric_info["metric"]: metric_score = metric_info["metric"]["precision"] elif "exp_rate" in metric_info["metric"]: metric_score = metric_info["metric"]["exp_rate"] else: metric_score = 0 train_results["models"][f"last_{1}"]["score"] = metric_score for tag in save_model_tag: train_results["models"][f"last_{1}"][tag] = os.path.join( prefix, f"{prefix}.{tag}" if tag != "pdstates" else f"{prefix}.states" ) for tag in save_inference_tag: train_results["models"][f"last_{1}"][tag] = os.path.join( prefix, "inference", f"inference.{tag}" if tag != "inference_config" else "inference.yml", ) with open(train_results_path, "w") as fp: json.dump(train_results, fp)