# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from tqdm import tqdm import numpy as np import argparse import paddle from paddleslim.common import load_config as load_slim_config from paddleslim.common import get_logger from paddleslim.auto_compression import AutoCompression from paddleslim.common.dataloader import get_feed_vars import sys sys.path.append('../../../') from ppocr.data import build_dataloader from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric logger = get_logger(__name__, level=logging.INFO) def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--config_path', type=str, default=None, help="path of compression strategy config.", required=True) parser.add_argument( '--save_dir', type=str, default='output', help="directory to save compressed model.") parser.add_argument( '--devices', type=str, default='gpu', help="which device used to compress.") return parser def reader_wrapper(reader, input_name): if isinstance(input_name, list) and len(input_name) == 1: input_name = input_name[0] def gen(): # 形成一个字典输入 for i, batch in enumerate(reader()): yield {input_name: batch[0]} return gen def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list): post_process_class = build_post_process(all_config['PostProcess'], global_config) eval_class = build_metric(all_config['Metric']) model_type = global_config['model_type'] with tqdm( total=len(val_loader), bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}', ncols=80) as t: for batch_id, batch in enumerate(val_loader): images = batch[0] try: preds, = exe.run(compiled_test_program, feed={test_feed_names[0]: images}, fetch_list=test_fetch_list) except: preds, _ = exe.run(compiled_test_program, feed={test_feed_names[0]: images}, fetch_list=test_fetch_list) batch_numpy = [] for item in batch: batch_numpy.append(np.array(item)) if model_type == 'det': preds_map = {'maps': preds} post_result = post_process_class(preds_map, batch_numpy[1]) eval_class(post_result, batch_numpy) elif model_type == 'rec': post_result = post_process_class(preds, batch_numpy[1]) eval_class(post_result, batch_numpy) t.update() metric = eval_class.get_metric() logger.info('metric eval ***************') for k, v in metric.items(): logger.info('{}:{}'.format(k, v)) if model_type == 'det': return metric['hmean'] elif model_type == 'rec': return metric['acc'] return metric def main(): rank_id = paddle.distributed.get_rank() if args.devices == 'gpu': place = paddle.CUDAPlace(rank_id) paddle.set_device('gpu') else: place = paddle.CPUPlace() paddle.set_device('cpu') global all_config, global_config all_config = load_slim_config(args.config_path) if "Global" not in all_config: raise KeyError(f"Key 'Global' not found in config file. \n{all_config}") global_config = all_config["Global"] gpu_num = paddle.distributed.get_world_size() train_dataloader = build_dataloader(all_config, 'Train', args.devices, logger) global val_loader val_loader = build_dataloader(all_config, 'Eval', args.devices, logger) if isinstance(all_config['TrainConfig']['learning_rate'], dict) and all_config['TrainConfig']['learning_rate'][ 'type'] == 'CosineAnnealingDecay': steps = len(train_dataloader) * all_config['TrainConfig']['epochs'] all_config['TrainConfig']['learning_rate']['T_max'] = steps print('total training steps:', steps) global_config['input_name'] = get_feed_vars( global_config['model_dir'], global_config['model_filename'], global_config['params_filename']) ac = AutoCompression( model_dir=global_config['model_dir'], model_filename=global_config['model_filename'], params_filename=global_config['params_filename'], save_dir=args.save_dir, config=all_config, train_dataloader=reader_wrapper(train_dataloader, global_config['input_name']), eval_callback=eval_function if rank_id == 0 else None, eval_dataloader=reader_wrapper(val_loader, global_config['input_name'])) ac.compress() if __name__ == '__main__': paddle.enable_static() parser = argsparser() args = parser.parse_args() main()