import math import paddle from paddle import nn BatchNorm2d = nn.BatchNorm2D __all__ = [ "ResNet", "resnet18", "resnet34", "resnet50", "resnet101", "deformable_resnet18", "deformable_resnet50", "resnet152", ] model_urls = { "resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth", "resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", } def constant_init(module, constant, bias=0): module.weight = paddle.create_parameter( shape=module.weight.shape, dtype="float32", default_initializer=paddle.nn.initializer.Constant(constant), ) if hasattr(module, "bias"): module.bias = paddle.create_parameter( shape=module.bias.shape, dtype="float32", default_initializer=paddle.nn.initializer.Constant(bias), ) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2D( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias_attr=False ) class BasicBlock(nn.Layer): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(BasicBlock, self).__init__() self.with_dcn = dcn is not None self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = BatchNorm2d(planes, momentum=0.1) self.relu = nn.ReLU() self.with_modulated_dcn = False if not self.with_dcn: self.conv2 = nn.Conv2D( planes, planes, kernel_size=3, padding=1, bias_attr=False ) else: from paddle.version.ops import DeformConv2D deformable_groups = dcn.get("deformable_groups", 1) offset_channels = 18 self.conv2_offset = nn.Conv2D( planes, deformable_groups * offset_channels, kernel_size=3, padding=1 ) self.conv2 = DeformConv2D( planes, planes, kernel_size=3, padding=1, bias_attr=False ) self.bn2 = BatchNorm2d(planes, momentum=0.1) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Layer): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None): super(Bottleneck, self).__init__() self.with_dcn = dcn is not None self.conv1 = nn.Conv2D(inplanes, planes, kernel_size=1, bias_attr=False) self.bn1 = BatchNorm2d(planes, momentum=0.1) self.with_modulated_dcn = False if not self.with_dcn: self.conv2 = nn.Conv2D( planes, planes, kernel_size=3, stride=stride, padding=1, bias_attr=False ) else: deformable_groups = dcn.get("deformable_groups", 1) from paddle.vision.ops import DeformConv2D offset_channels = 18 self.conv2_offset = nn.Conv2D( planes, deformable_groups * offset_channels, stride=stride, kernel_size=3, padding=1, ) self.conv2 = DeformConv2D( planes, planes, kernel_size=3, padding=1, stride=stride, bias_attr=False ) self.bn2 = BatchNorm2d(planes, momentum=0.1) self.conv3 = nn.Conv2D(planes, planes * 4, kernel_size=1, bias_attr=False) self.bn3 = BatchNorm2d(planes * 4, momentum=0.1) self.relu = nn.ReLU() self.downsample = downsample self.stride = stride self.dcn = dcn self.with_dcn = dcn is not None def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) # out = self.conv2(out) if not self.with_dcn: out = self.conv2(out) else: offset = self.conv2_offset(out) out = self.conv2(out, offset) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Layer): def __init__(self, block, layers, in_channels=3, dcn=None): self.dcn = dcn self.inplanes = 64 super(ResNet, self).__init__() self.out_channels = [] self.conv1 = nn.Conv2D( in_channels, 64, kernel_size=7, stride=2, padding=3, bias_attr=False ) self.bn1 = BatchNorm2d(64, momentum=0.1) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dcn=dcn) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dcn=dcn) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dcn=dcn) if self.dcn is not None: for m in self.modules(): if isinstance(m, Bottleneck) or isinstance(m, BasicBlock): if hasattr(m, "conv2_offset"): constant_init(m.conv2_offset, 0) def _make_layer(self, block, planes, blocks, stride=1, dcn=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias_attr=False, ), BatchNorm2d(planes * block.expansion, momentum=0.1), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dcn=dcn)) self.out_channels.append(planes * block.expansion) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) return x2, x3, x4, x5 def load_torch_params(paddle_model, torch_patams): paddle_params = paddle_model.state_dict() fc_names = ["classifier"] for key, torch_value in torch_patams.items(): if "num_batches_tracked" in key: continue key = ( key.replace("running_var", "_variance") .replace("running_mean", "_mean") .replace("module.", "") ) torch_value = torch_value.detach().cpu().numpy() if key in paddle_params: flag = [i in key for i in fc_names] if any(flag) and "weight" in key: # ignore bias new_shape = [1, 0] + list(range(2, torch_value.ndim)) print( f"name: {key}, ori shape: {torch_value.shape}, new shape: {torch_value.transpose(new_shape).shape}" ) torch_value = torch_value.transpose(new_shape) paddle_params[key] = torch_value else: print(f"{key} not in paddle") paddle_model.set_state_dict(paddle_params) def load_models(model, model_name): import torch.utils.model_zoo as model_zoo torch_patams = model_zoo.load_url(model_urls[model_name]) load_torch_params(model, torch_patams) def resnet18(pretrained=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" print("load from imagenet") load_models(model, "resnet18") return model def deformable_resnet18(pretrained=True, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], dcn=dict(deformable_groups=1), **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" print("load from imagenet") model.load_state_dict(model_zoo.load_url(model_urls["resnet18"]), strict=False) return model def resnet34(pretrained=True, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" model.load_state_dict(model_zoo.load_url(model_urls["resnet34"]), strict=False) return model def resnet50(pretrained=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" load_models(model, "resnet50") return model def deformable_resnet50(pretrained=True, **kwargs): """Constructs a ResNet-50 model with deformable conv. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], dcn=dict(deformable_groups=1), **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" model.load_state_dict(model_zoo.load_url(model_urls["resnet50"]), strict=False) return model def resnet101(pretrained=True, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" model.load_state_dict(model_zoo.load_url(model_urls["resnet101"]), strict=False) return model def resnet152(pretrained=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: assert ( kwargs.get("in_channels", 3) == 3 ), "in_channels must be 3 whem pretrained is True" model.load_state_dict(model_zoo.load_url(model_urls["resnet152"]), strict=False) return model if __name__ == "__main__": x = paddle.zeros([2, 3, 640, 640]) net = resnet50(pretrained=True) y = net(x) for u in y: print(u.shape) print(net.out_channels)