# -*- coding: utf-8 -*- # @Time : 2019/8/23 21:54 # @Author : zhoujun import pathlib import os import cv2 import numpy as np import scipy.io as sio from tqdm.auto import tqdm from base import BaseDataSet from utils import order_points_clockwise, get_datalist, load, expand_polygon class ICDAR2015Dataset(BaseDataSet): def __init__(self, data_path: str, img_mode, pre_processes, filter_keys, ignore_tags, transform=None, **kwargs): super().__init__(data_path, img_mode, pre_processes, filter_keys, ignore_tags, transform) def load_data(self, data_path: str) -> list: data_list = get_datalist(data_path) t_data_list = [] for img_path, label_path in data_list: data = self._get_annotation(label_path) if len(data['text_polys']) > 0: item = { 'img_path': img_path, 'img_name': pathlib.Path(img_path).stem } item.update(data) t_data_list.append(item) else: print('there is no suit bbox in {}'.format(label_path)) return t_data_list def _get_annotation(self, label_path: str) -> dict: boxes = [] texts = [] ignores = [] with open(label_path, encoding='utf-8', mode='r') as f: for line in f.readlines(): params = line.strip().strip('\ufeff').strip( '\xef\xbb\xbf').split(',') try: box = order_points_clockwise( np.array(list(map(float, params[:8]))).reshape(-1, 2)) if cv2.contourArea(box) > 0: boxes.append(box) label = params[8] texts.append(label) ignores.append(label in self.ignore_tags) except: print('load label failed on {}'.format(label_path)) data = { 'text_polys': np.array(boxes), 'texts': texts, 'ignore_tags': ignores, } return data class DetDataset(BaseDataSet): def __init__(self, data_path: str, img_mode, pre_processes, filter_keys, ignore_tags, transform=None, **kwargs): self.load_char_annotation = kwargs['load_char_annotation'] self.expand_one_char = kwargs['expand_one_char'] super().__init__(data_path, img_mode, pre_processes, filter_keys, ignore_tags, transform) def load_data(self, data_path: str) -> list: """ 从json文件中读取出 文本行的坐标和gt,字符的坐标和gt :param data_path: :return: """ data_list = [] for path in data_path: content = load(path) for gt in tqdm( content['data_list'], desc='read file {}'.format(path)): img_path = os.path.join(content['data_root'], gt['img_name']) polygons = [] texts = [] illegibility_list = [] language_list = [] for annotation in gt['annotations']: if len(annotation['polygon']) == 0 or len(annotation[ 'text']) == 0: continue if len(annotation['text']) > 1 and self.expand_one_char: annotation['polygon'] = expand_polygon(annotation[ 'polygon']) polygons.append(annotation['polygon']) texts.append(annotation['text']) illegibility_list.append(annotation['illegibility']) language_list.append(annotation['language']) if self.load_char_annotation: for char_annotation in annotation['chars']: if len(char_annotation['polygon']) == 0 or len( char_annotation['char']) == 0: continue polygons.append(char_annotation['polygon']) texts.append(char_annotation['char']) illegibility_list.append(char_annotation[ 'illegibility']) language_list.append(char_annotation['language']) data_list.append({ 'img_path': img_path, 'img_name': gt['img_name'], 'text_polys': np.array(polygons), 'texts': texts, 'ignore_tags': illegibility_list }) return data_list class SynthTextDataset(BaseDataSet): def __init__(self, data_path: str, img_mode, pre_processes, filter_keys, transform=None, **kwargs): self.transform = transform self.dataRoot = pathlib.Path(data_path) if not self.dataRoot.exists(): raise FileNotFoundError('Dataset folder is not exist.') self.targetFilePath = self.dataRoot / 'gt.mat' if not self.targetFilePath.exists(): raise FileExistsError('Target file is not exist.') targets = {} sio.loadmat( self.targetFilePath, targets, squeeze_me=True, struct_as_record=False, variable_names=['imnames', 'wordBB', 'txt']) self.imageNames = targets['imnames'] self.wordBBoxes = targets['wordBB'] self.transcripts = targets['txt'] super().__init__(data_path, img_mode, pre_processes, filter_keys, transform) def load_data(self, data_path: str) -> list: t_data_list = [] for imageName, wordBBoxes, texts in zip( self.imageNames, self.wordBBoxes, self.transcripts): item = {} wordBBoxes = np.expand_dims( wordBBoxes, axis=2) if (wordBBoxes.ndim == 2) else wordBBoxes _, _, numOfWords = wordBBoxes.shape text_polys = wordBBoxes.reshape( [8, numOfWords], order='F').T # num_words * 8 text_polys = text_polys.reshape(numOfWords, 4, 2) # num_of_words * 4 * 2 transcripts = [word for line in texts for word in line.split()] if numOfWords != len(transcripts): continue item['img_path'] = str(self.dataRoot / imageName) item['img_name'] = (self.dataRoot / imageName).stem item['text_polys'] = text_polys item['texts'] = transcripts item['ignore_tags'] = [x in self.ignore_tags for x in transcripts] t_data_list.append(item) return t_data_list