import os import sys import pathlib __dir__ = pathlib.Path(os.path.abspath(__file__)) sys.path.append(str(__dir__)) sys.path.append(str(__dir__.parent.parent)) import paddle import paddle.distributed as dist from utils import Config, ArgsParser def init_args(): parser = ArgsParser() args = parser.parse_args() return args def main(config, profiler_options): from models import build_model, build_loss from data_loader import get_dataloader from trainer import Trainer from post_processing import get_post_processing from utils import get_metric if paddle.device.cuda.device_count() > 1: dist.init_parallel_env() config['distributed'] = True else: config['distributed'] = False train_loader = get_dataloader(config['dataset']['train'], config['distributed']) assert train_loader is not None if 'validate' in config['dataset']: validate_loader = get_dataloader(config['dataset']['validate'], False) else: validate_loader = None criterion = build_loss(config['loss']) config['arch']['backbone']['in_channels'] = 3 if config['dataset']['train'][ 'dataset']['args']['img_mode'] != 'GRAY' else 1 model = build_model(config['arch']) # set @to_static for benchmark, skip this by default. post_p = get_post_processing(config['post_processing']) metric = get_metric(config['metric']) trainer = Trainer( config=config, model=model, criterion=criterion, train_loader=train_loader, post_process=post_p, metric_cls=metric, validate_loader=validate_loader, profiler_options=profiler_options) trainer.train() if __name__ == '__main__': args = init_args() assert os.path.exists(args.config_file) config = Config(args.config_file) config.merge_dict(args.opt) main(config.cfg, args.profiler_options)