--- comments: true --- # Table Classification Module Usage Tutorial ## 1. Overview The Table Classification Module is a key component in computer vision systems, responsible for classifying input table images. The performance of this module directly affects the accuracy and efficiency of the entire table recognition process. The Table Classification Module typically receives table images as input and, using deep learning algorithms, classifies them into predefined categories based on the characteristics and content of the images, such as wired and wireless tables. The classification results from the Table Classification Module serve as output for use in table recognition pipelines. ## 2. Supported Model List
Model | Model Download Link | Top1 Acc(%) | GPU Inference Time (ms) [Regular Mode / High-Performance Mode] |
CPU Inference Time (ms) [Regular Mode / High-Performance Mode] |
Model Storage Size (M) |
---|---|---|---|---|---|
PP-LCNet_x1_0_table_cls | Inference Model/Training Model | 94.2 | 2.35 / 0.47 | 4.03 / 1.35 | 6.6M |
Mode | GPU Configuration | CPU Configuration | Acceleration Technology Combination |
---|---|---|---|
Regular Mode | FP32 Precision / No TRT Acceleration | FP32 Precision / 8 Threads | PaddleInference |
High-Performance Mode | Optimal combination of prior precision type and acceleration strategy | FP32 Precision / 8 Threads | Choose the optimal prior backend (Paddle/OpenVINO/TRT, etc.) |
Parameter | Description | Type | Options | Default Value |
---|---|---|---|---|
model_name |
Model Name | str |
None | None |
model_dir |
Model Storage Path | str |
None | None |
device |
Model Inference Device | str |
Supports specifying specific GPU card numbers, such as “gpu:0”, specific hardware card numbers, such as “npu:0”, CPU as “cpu”. | gpu:0 |
use_hpip |
Whether to enable high-performance inference plugin | bool |
None | False |
hpi_config |
High-Performance Inference Configuration | dict | None |
None | None |
Parameter | Description | Type | Options | Default Value |
---|---|---|---|---|
input |
Data to be predicted, supports multiple input types | Python Var /str /list |
|
None |
batch_size |
Batch Size | int |
Any integer | 1 |
Method | Description | Parameter | Type | Parameter Description | Default Value |
---|---|---|---|---|---|
print() |
Print result to terminal | format_json |
bool |
Whether to format the output content using JSON indentation |
True |
indent |
int |
Specifies the indentation level to beautify the output JSON data, making it more readable, effective only when format_json is True |
4 | ||
ensure_ascii |
bool |
Controls whether to escape non-ASCII characters into Unicode . When set to True , all non-ASCII characters will be escaped; False will retain the original characters, effective only when format_json is True |
False |
||
save_to_json() |
Save the result as a json format file | save_path |
str |
The path to save the file. When specified as a directory, the saved file is named consistent with the input file type. | None |
indent |
int |
Specifies the indentation level to beautify the output JSON data, making it more readable, effective only when format_json is True |
4 | ||
ensure_ascii |
bool |
Controls whether to escape non-ASCII characters into Unicode . When set to True , all non-ASCII characters will be escaped; False will retain the original characters, effective only when format_json is True |
False |
Attribute | Description |
---|---|
json |
Get the prediction result in json format |
img |
Get the visualized image |