# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import KaimingNormal, Constant from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D from paddle.regularizer import L2Decay from paddle import ParamAttr kaiming_normal_ = KaimingNormal() zeros_ = Constant(value=0.0) ones_ = Constant(value=1.0) class ConvBNAct(nn.Layer): def __init__( self, in_channels, out_channels, kernel_size, stride, groups=1, use_act=True ): super().__init__() self.use_act = use_act self.conv = Conv2D( in_channels, out_channels, kernel_size, stride, padding=(kernel_size - 1) // 2, groups=groups, bias_attr=False, ) self.bn = BatchNorm2D( out_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0)), ) if self.use_act: self.act = ReLU() def forward(self, x): x = self.conv(x) x = self.bn(x) if self.use_act: x = self.act(x) return x class ESEModule(nn.Layer): def __init__(self, channels): super().__init__() self.avg_pool = AdaptiveAvgPool2D(1) self.conv = Conv2D( in_channels=channels, out_channels=channels, kernel_size=1, stride=1, padding=0, ) self.sigmoid = nn.Sigmoid() def forward(self, x): identity = x x = self.avg_pool(x) x = self.conv(x) x = self.sigmoid(x) return paddle.multiply(x=identity, y=x) class HG_Block(nn.Layer): def __init__( self, in_channels, mid_channels, out_channels, layer_num, identity=False, ): super().__init__() self.identity = identity self.layers = nn.LayerList() self.layers.append( ConvBNAct( in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=1, ) ) for _ in range(layer_num - 1): self.layers.append( ConvBNAct( in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, stride=1, ) ) # feature aggregation total_channels = in_channels + layer_num * mid_channels self.aggregation_conv = ConvBNAct( in_channels=total_channels, out_channels=out_channels, kernel_size=1, stride=1, ) self.att = ESEModule(out_channels) def forward(self, x): identity = x output = [] output.append(x) for layer in self.layers: x = layer(x) output.append(x) x = paddle.concat(output, axis=1) x = self.aggregation_conv(x) x = self.att(x) if self.identity: x += identity return x class HG_Stage(nn.Layer): def __init__( self, in_channels, mid_channels, out_channels, block_num, layer_num, downsample=True, stride=[2, 1], ): super().__init__() self.downsample = downsample if downsample: self.downsample = ConvBNAct( in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=stride, groups=in_channels, use_act=False, ) blocks_list = [] blocks_list.append( HG_Block(in_channels, mid_channels, out_channels, layer_num, identity=False) ) for _ in range(block_num - 1): blocks_list.append( HG_Block( out_channels, mid_channels, out_channels, layer_num, identity=True ) ) self.blocks = nn.Sequential(*blocks_list) def forward(self, x): if self.downsample: x = self.downsample(x) x = self.blocks(x) return x class PPHGNet(nn.Layer): """ PPHGNet Args: stem_channels: list. Stem channel list of PPHGNet. stage_config: dict. The configuration of each stage of PPHGNet. such as the number of channels, stride, etc. layer_num: int. Number of layers of HG_Block. use_last_conv: boolean. Whether to use a 1x1 convolutional layer before the classification layer. class_expand: int=2048. Number of channels for the last 1x1 convolutional layer. dropout_prob: float. Parameters of dropout, 0.0 means dropout is not used. class_num: int=1000. The number of classes. Returns: model: nn.Layer. Specific PPHGNet model depends on args. """ def __init__( self, stem_channels, stage_config, layer_num, in_channels=3, det=False, out_indices=None, ): super().__init__() self.det = det self.out_indices = out_indices if out_indices is not None else [0, 1, 2, 3] # stem stem_channels.insert(0, in_channels) self.stem = nn.Sequential( *[ ConvBNAct( in_channels=stem_channels[i], out_channels=stem_channels[i + 1], kernel_size=3, stride=2 if i == 0 else 1, ) for i in range(len(stem_channels) - 1) ] ) if self.det: self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) # stages self.stages = nn.LayerList() self.out_channels = [] for block_id, k in enumerate(stage_config): ( in_channels, mid_channels, out_channels, block_num, downsample, stride, ) = stage_config[k] self.stages.append( HG_Stage( in_channels, mid_channels, out_channels, block_num, layer_num, downsample, stride, ) ) if block_id in self.out_indices: self.out_channels.append(out_channels) if not self.det: self.out_channels = stage_config["stage4"][2] self._init_weights() def _init_weights(self): for m in self.sublayers(): if isinstance(m, nn.Conv2D): kaiming_normal_(m.weight) elif isinstance(m, (nn.BatchNorm2D)): ones_(m.weight) zeros_(m.bias) elif isinstance(m, nn.Linear): zeros_(m.bias) def forward(self, x): x = self.stem(x) if self.det: x = self.pool(x) out = [] for i, stage in enumerate(self.stages): x = stage(x) if self.det and i in self.out_indices: out.append(x) if self.det: return out if self.training: x = F.adaptive_avg_pool2d(x, [1, 40]) else: x = F.avg_pool2d(x, [3, 2]) return x def PPHGNet_tiny(pretrained=False, use_ssld=False, **kwargs): """ PPHGNet_tiny Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPHGNet_tiny` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, blocks, downsample "stage1": [96, 96, 224, 1, False, [2, 1]], "stage2": [224, 128, 448, 1, True, [1, 2]], "stage3": [448, 160, 512, 2, True, [2, 1]], "stage4": [512, 192, 768, 1, True, [2, 1]], } model = PPHGNet( stem_channels=[48, 48, 96], stage_config=stage_config, layer_num=5, **kwargs ) return model def PPHGNet_small(pretrained=False, use_ssld=False, det=False, **kwargs): """ PPHGNet_small Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPHGNet_small` model depends on args. """ stage_config_det = { # in_channels, mid_channels, out_channels, blocks, downsample "stage1": [128, 128, 256, 1, False, 2], "stage2": [256, 160, 512, 1, True, 2], "stage3": [512, 192, 768, 2, True, 2], "stage4": [768, 224, 1024, 1, True, 2], } stage_config_rec = { # in_channels, mid_channels, out_channels, blocks, downsample "stage1": [128, 128, 256, 1, True, [2, 1]], "stage2": [256, 160, 512, 1, True, [1, 2]], "stage3": [512, 192, 768, 2, True, [2, 1]], "stage4": [768, 224, 1024, 1, True, [2, 1]], } model = PPHGNet( stem_channels=[64, 64, 128], stage_config=stage_config_det if det else stage_config_rec, layer_num=6, det=det, **kwargs ) return model def PPHGNet_base(pretrained=False, use_ssld=True, **kwargs): """ PPHGNet_base Args: pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. If str, means the path of the pretrained model. use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. Returns: model: nn.Layer. Specific `PPHGNet_base` model depends on args. """ stage_config = { # in_channels, mid_channels, out_channels, blocks, downsample "stage1": [160, 192, 320, 1, False, [2, 1]], "stage2": [320, 224, 640, 2, True, [1, 2]], "stage3": [640, 256, 960, 3, True, [2, 1]], "stage4": [960, 288, 1280, 2, True, [2, 1]], } model = PPHGNet( stem_channels=[96, 96, 160], stage_config=stage_config, layer_num=7, dropout_prob=0.2, **kwargs ) return model