# Real-time Scene Text Detection with Differentiable Binarization **note**: some code is inherited from [WenmuZhou/DBNet.pytorch](https://github.com/WenmuZhou/DBNet.pytorch) [中文解读](https://zhuanlan.zhihu.com/p/94677957)  ## update 2020-06-07: 添加灰度图训练,训练灰度图时需要在配置里移除`dataset.args.transforms.Normalize` ## Install Using Conda ``` conda env create -f environment.yml git clone https://github.com/WenmuZhou/DBNet.paddle.git cd DBNet.paddle/ ``` or ## Install Manually ```bash conda create -n dbnet python=3.6 conda activate dbnet conda install ipython pip # python dependencies pip install -r requirement.txt # clone repo git clone https://github.com/WenmuZhou/DBNet.paddle.git cd DBNet.paddle/ ``` ## Requirements * paddlepaddle 2.4+ ## Download TBD ## Data Preparation Training data: prepare a text `train.txt` in the following format, use '\t' as a separator ``` ./datasets/train/img/001.jpg ./datasets/train/gt/001.txt ``` Validation data: prepare a text `test.txt` in the following format, use '\t' as a separator ``` ./datasets/test/img/001.jpg ./datasets/test/gt/001.txt ``` - Store images in the `img` folder - Store groundtruth in the `gt` folder The groundtruth can be `.txt` files, with the following format: ``` x1, y1, x2, y2, x3, y3, x4, y4, annotation ``` ## Train 1. config the `dataset['train']['dataset'['data_path']'`,`dataset['validate']['dataset'['data_path']`in [config/icdar2015_resnet18_fpn_DBhead_polyLR.yaml](cconfig/icdar2015_resnet18_fpn_DBhead_polyLR.yaml) * . single gpu train ```bash bash singlel_gpu_train.sh ``` * . Multi-gpu training ```bash bash multi_gpu_train.sh ``` ## Test [eval.py](tools/eval.py) is used to test model on test dataset 1. config `model_path` in [eval.sh](eval.sh) 2. use following script to test ```bash bash eval.sh ``` ## Predict [predict.py](tools/predict.py) Can be used to inference on all images in a folder 1. config `model_path`,`input_folder`,`output_folder` in [predict.sh](predict.sh) 2. use following script to predict ``` bash predict.sh ``` You can change the `model_path` in the `predict.sh` file to your model location. tips: if result is not good, you can change `thre` in [predict.sh](predict.sh) ## Export Model [export_model.py](tools/export_model.py) Can be used to inference on all images in a folder use following script to export inference model ``` python tools/export_model.py --config_file config/icdar2015_resnet50_FPN_DBhead_polyLR.yaml -o trainer.resume_checkpoint=model_best.pth trainer.output_dir=output/infer ``` ## Paddle Inference infer [infer.py](tools/infer.py) Can be used to inference on all images in a folder use following script to export inference model ``` python tools/infer.py --model-dir=output/infer/ --img-path imgs/paper/db.jpg ```