# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy import paddle __all__ = ["build_optimizer"] def build_lr_scheduler(lr_config, epochs, step_each_epoch): from . import learning_rate lr_config.update({"epochs": epochs, "step_each_epoch": step_each_epoch}) lr_name = lr_config.pop("name", "Const") lr = getattr(learning_rate, lr_name)(**lr_config)() return lr def build_optimizer(config, epochs, step_each_epoch, model): from . import regularizer, optimizer config = copy.deepcopy(config) # step1 build lr lr = build_lr_scheduler(config.pop("lr"), epochs, step_each_epoch) # step2 build regularization if "regularizer" in config and config["regularizer"] is not None: reg_config = config.pop("regularizer") reg_name = reg_config.pop("name") if not hasattr(regularizer, reg_name): reg_name += "Decay" reg = getattr(regularizer, reg_name)(**reg_config)() elif "weight_decay" in config: reg = config.pop("weight_decay") else: reg = None # step3 build optimizer optim_name = config.pop("name") if "clip_norm" in config: clip_norm = config.pop("clip_norm") grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm) elif "clip_norm_global" in config: clip_norm = config.pop("clip_norm_global") grad_clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=clip_norm) else: grad_clip = None optim = getattr(optimizer, optim_name)( learning_rate=lr, weight_decay=reg, grad_clip=grad_clip, **config ) return optim(model), lr