# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.distributed as dist import math import paddle import paddle.nn as nn class _AllReduce(paddle.autograd.PyLayer): @staticmethod def forward(ctx, input): input_list = [paddle.zeros_like(input) for k in range(dist.get_world_size())] # Use allgather instead of allreduce since I don't trust in-place operations .. dist.all_gather(input_list, input, sync_op=True) inputs = paddle.stack(input_list, axis=0) return paddle.sum(inputs, axis=0) @staticmethod def backward(ctx, grad_output): dist.all_reduce(grad_output, sync_op=True) return grad_output def differentiable_all_reduce(input): """ Differentiable counterpart of `dist.all_reduce`. """ if ( not dist.is_available() or not dist.is_initialized() or dist.get_world_size() == 1 ): return input return _AllReduce.apply(input) class NaiveSyncBatchNorm(nn.BatchNorm2D): def __init__(self, *args, stats_mode="", **kwargs): super().__init__(*args, **kwargs) assert stats_mode in ["", "N"] self._stats_mode = stats_mode def forward(self, input): if dist.get_world_size() == 1 or not self.training: return super().forward(input) B, C = input.shape[0], input.shape[1] mean = paddle.mean(input, axis=[0, 2, 3]) meansqr = paddle.mean(input * input, axis=[0, 2, 3]) if self._stats_mode == "": assert ( B > 0 ), 'SyncBatchNorm(stats_mode="") does not support zero batch size.' vec = paddle.concat([mean, meansqr], axis=0) vec = differentiable_all_reduce(vec) * (1.0 / dist.get_world_size()) mean, meansqr = paddle.split(vec, [C, C]) momentum = ( 1 - self._momentum ) # NOTE: paddle has reverse momentum defination else: if B == 0: vec = paddle.zeros([2 * C + 1], dtype=mean.dtype) vec = vec + input.sum() # make sure there is gradient w.r.t input else: vec = paddle.concat( [ mean, meansqr, paddle.ones([1], dtype=mean.dtype), ], axis=0, ) vec = differentiable_all_reduce(vec * B) total_batch = vec[-1].detach() momentum = total_batch.clip(max=1) * ( 1 - self._momentum ) # no update if total_batch is 0 mean, meansqr, _ = paddle.split( vec / total_batch.clip(min=1), [C, C, int(vec.shape[0] - 2 * C)] ) # avoid div-by-zero var = meansqr - mean * mean invstd = paddle.rsqrt(var + self._epsilon) scale = self.weight * invstd bias = self.bias - mean * scale scale = scale.reshape([1, -1, 1, 1]) bias = bias.reshape([1, -1, 1, 1]) tmp_mean = self._mean + momentum * (mean.detach() - self._mean) self._mean.set_value(tmp_mean) tmp_variance = self._variance + (momentum * (var.detach() - self._variance)) self._variance.set_value(tmp_variance) ret = input * scale + bias return ret def convert_syncbn(model): for n, m in model.named_children(): if isinstance(m, nn.layer.norm._BatchNormBase): syncbn = NaiveSyncBatchNorm( m._num_features, m._momentum, m._epsilon, m._weight_attr, m._bias_attr ) setattr(model, n, syncbn) else: convert_syncbn(m)