# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import nn from ppocr.modeling.backbones.det_mobilenet_v3 import ( ResidualUnit, ConvBNLayer, make_divisible, ) __all__ = ["MobileNetV3"] class MobileNetV3(nn.Layer): def __init__( self, in_channels=3, model_name="small", scale=0.5, large_stride=None, small_stride=None, disable_se=False, **kwargs, ): super(MobileNetV3, self).__init__() self.disable_se = disable_se if small_stride is None: small_stride = [2, 2, 2, 2] if large_stride is None: large_stride = [1, 2, 2, 2] assert isinstance( large_stride, list ), "large_stride type must " "be list but got {}".format(type(large_stride)) assert isinstance( small_stride, list ), "small_stride type must " "be list but got {}".format(type(small_stride)) assert ( len(large_stride) == 4 ), "large_stride length must be " "4 but got {}".format(len(large_stride)) assert ( len(small_stride) == 4 ), "small_stride length must be " "4 but got {}".format(len(small_stride)) if model_name == "large": cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, False, "relu", large_stride[0]], [3, 64, 24, False, "relu", (large_stride[1], 1)], [3, 72, 24, False, "relu", 1], [5, 72, 40, True, "relu", (large_stride[2], 1)], [5, 120, 40, True, "relu", 1], [5, 120, 40, True, "relu", 1], [3, 240, 80, False, "hardswish", 1], [3, 200, 80, False, "hardswish", 1], [3, 184, 80, False, "hardswish", 1], [3, 184, 80, False, "hardswish", 1], [3, 480, 112, True, "hardswish", 1], [3, 672, 112, True, "hardswish", 1], [5, 672, 160, True, "hardswish", (large_stride[3], 1)], [5, 960, 160, True, "hardswish", 1], [5, 960, 160, True, "hardswish", 1], ] cls_ch_squeeze = 960 elif model_name == "small": cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, True, "relu", (small_stride[0], 1)], [3, 72, 24, False, "relu", (small_stride[1], 1)], [3, 88, 24, False, "relu", 1], [5, 96, 40, True, "hardswish", (small_stride[2], 1)], [5, 240, 40, True, "hardswish", 1], [5, 240, 40, True, "hardswish", 1], [5, 120, 48, True, "hardswish", 1], [5, 144, 48, True, "hardswish", 1], [5, 288, 96, True, "hardswish", (small_stride[3], 1)], [5, 576, 96, True, "hardswish", 1], [5, 576, 96, True, "hardswish", 1], ] cls_ch_squeeze = 576 else: raise NotImplementedError( "mode[" + model_name + "_model] is not implemented!" ) supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] assert ( scale in supported_scale ), "supported scales are {} but input scale is {}".format( supported_scale, scale ) inplanes = 16 # conv1 self.conv1 = ConvBNLayer( in_channels=in_channels, out_channels=make_divisible(inplanes * scale), kernel_size=3, stride=2, padding=1, groups=1, if_act=True, act="hardswish", ) i = 0 block_list = [] inplanes = make_divisible(inplanes * scale) for k, exp, c, se, nl, s in cfg: se = se and not self.disable_se block_list.append( ResidualUnit( in_channels=inplanes, mid_channels=make_divisible(scale * exp), out_channels=make_divisible(scale * c), kernel_size=k, stride=s, use_se=se, act=nl, ) ) inplanes = make_divisible(scale * c) i += 1 self.blocks = nn.Sequential(*block_list) self.conv2 = ConvBNLayer( in_channels=inplanes, out_channels=make_divisible(scale * cls_ch_squeeze), kernel_size=1, stride=1, padding=0, groups=1, if_act=True, act="hardswish", ) self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) self.out_channels = make_divisible(scale * cls_ch_squeeze) def forward(self, x): x = self.conv1(x) x = self.blocks(x) x = self.conv2(x) x = self.pool(x) return x