# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial from typing import Optional, Tuple, Type import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle.nn.initializer import ( Constant, KaimingUniform, Normal, TruncatedNormal, XavierUniform, ) from ppocr.modeling.backbones.rec_donut_swin import DonutSwinModelOutput zeros_ = Constant(value=0.0) ones_ = Constant(value=1.0) kaiming_normal_ = KaimingUniform(nonlinearity="relu") trunc_normal_ = TruncatedNormal(std=0.02) xavier_uniform_ = XavierUniform() class MLPBlock(nn.Layer): def __init__( self, embedding_dim: int, mlp_dim: int, act: Type[nn.Layer] = nn.GELU, ) -> None: super().__init__() self.lin1 = nn.Linear(embedding_dim, mlp_dim) self.lin2 = nn.Linear(mlp_dim, embedding_dim) self.act = act() def forward(self, x): return self.lin2(self.act(self.lin1(x))) # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa class LayerNorm2d(nn.Layer): def __init__(self, num_channels: int, epsilon: float = 1e-6) -> None: super().__init__() self.weight = paddle.create_parameter([num_channels], dtype="float32") ones_(self.weight) self.bias = paddle.create_parameter([num_channels], dtype="float32") zeros_(self.bias) self.epsilon = epsilon def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / paddle.sqrt(s + self.epsilon) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa class ImageEncoderViT(nn.Layer): def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, out_chans: int = 256, qkv_bias: bool = True, norm_layer: Type[nn.Layer] = nn.LayerNorm, act_layer: Type[nn.Layer] = nn.GELU, use_abs_pos: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, global_attn_indexes: Tuple[int, ...] = (), is_formula: bool = False, ) -> None: """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Layer): Normalization layer. act_layer (nn.Layer): Activation layer. use_abs_pos (bool): If True, use absolute positional embeddings. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. global_attn_indexes (list): Indexes for blocks using global attention. """ super().__init__() self.img_size = img_size self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) self.pos_embed = None if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = paddle.create_parameter( shape=(1, img_size // patch_size, img_size // patch_size, embed_dim), dtype="float32", ) zeros_(self.pos_embed) self.blocks = nn.LayerList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i not in global_attn_indexes else 0, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(block) self.neck = nn.Sequential( nn.Conv2D( embed_dim, out_chans, kernel_size=1, bias_attr=False, ), LayerNorm2d(out_chans), nn.Conv2D( out_chans, out_chans, kernel_size=3, padding=1, bias_attr=False, ), LayerNorm2d(out_chans), ) self.net_2 = nn.Conv2D( 256, 512, kernel_size=3, stride=2, padding=1, bias_attr=False ) self.net_3 = nn.Conv2D( 512, 1024, kernel_size=3, stride=2, padding=1, bias_attr=False ) self.is_formula = is_formula def forward(self, x): x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.pos_embed for blk in self.blocks: x = blk(x) x = self.neck(x.transpose([0, 3, 1, 2])) x = self.net_2(x) if self.is_formula: x = self.net_3(x) return x class Block(nn.Layer): """Transformer blocks with support of window attention and residual propagation blocks""" def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = True, norm_layer: Type[nn.Layer] = nn.LayerNorm, act_layer: Type[nn.Layer] = nn.GELU, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, input_size: Optional[Tuple[int, int]] = None, ) -> None: """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Layer): Normalization layer. act_layer (nn.Layer): Activation layer. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. If it equals 0, then use global attention. input_size (tuple(int, int) or None): Input resolution for calculating the relative positional parameter size. """ super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, input_size=input_size if window_size == 0 else (window_size, window_size), ) self.norm2 = norm_layer(dim) self.mlp = MLPBlock( embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer ) self.window_size = window_size def forward(self, x): shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) x = shortcut + x x = x + self.mlp(self.norm2(x)) return x class Attention(nn.Layer): """Multi-head Attention block with relative position embeddings.""" def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, input_size: Optional[Tuple[int, int]] = None, ) -> None: """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool): If True, add a learnable bias to query, key, value. rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. input_size (tuple(int, int) or None): Input resolution for calculating the relative positional parameter size. """ super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.proj = nn.Linear(dim, dim) self.use_rel_pos = use_rel_pos if self.use_rel_pos: assert ( input_size is not None ), "Input size must be provided if using relative positional encoding." # initialize relative positional embeddings self.rel_pos_h = paddle.create_parameter( [2 * input_size[0] - 1, head_dim], dtype="float32" ) zeros_(self.rel_pos_h) self.rel_pos_w = paddle.create_parameter( [2 * input_size[1] - 1, head_dim], dtype="float32" ) zeros_(self.rel_pos_w) def forward(self, x): B, H, W, _ = x.shape qkv = ( self.qkv(x) .reshape([B, H * W, 3, self.num_heads, -1]) .transpose([2, 0, 3, 1, 4]) ) q, k, v = qkv.reshape([3, B * self.num_heads, H * W, -1]).unbind(0) attn = (q * self.scale) @ k.transpose([0, 2, 1]) if self.use_rel_pos: attn = add_decomposed_rel_pos( attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W) ) attn = F.softmax(attn, axis=-1) x = ( (attn @ v) .reshape([B, self.num_heads, H, W, -1]) .transpose([0, 2, 3, 1, 4]) .reshape([B, H, W, -1]) ) x = self.proj(x) return x def window_partition(x, window_size: int): """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h, 0, 0)) Hp, Wp = H + pad_h, W + pad_w x = x.reshape( [B, Hp // window_size, window_size, Wp // window_size, window_size, C] ) windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, window_size, window_size, C]) return windows, (Hp, Wp) def window_unpartition( windows, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] ): """ Window unpartition into original sequences and removing padding. Args: windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.reshape( [B, Hp // window_size, Wp // window_size, window_size, window_size, -1] ) x = x.transpose([0, 1, 3, 2, 4, 5]).contiguous().reshape([B, Hp, Wp, -1]) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x def get_rel_pos(q_size: int, k_size: int, rel_pos): """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).transpose(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).transpose(1, 0) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = paddle.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = paddle.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.cast(paddle.int64)] def add_decomposed_rel_pos( attn, q, rel_pos_h, rel_pos_w, q_size: Tuple[int, int], k_size: Tuple[int, int], ): """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 Args: attn (Tensor): attention map. q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. q_size (Tuple): spatial sequence size of query q with (q_h, q_w). k_size (Tuple): spatial sequence size of key k with (k_h, k_w). Returns: attn (Tensor): attention map with added relative positional embeddings. """ q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w) B, _, dim = q.shape r_q = q.reshape([B, q_h, q_w, dim]) rel_h = paddle.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = paddle.einsum("bhwc,wkc->bhwk", r_q, Rw) attn = ( attn.reshape([B, q_h, q_w, k_h, k_w]) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] ).reshape([B, q_h * q_w, k_h * k_w]) return attn class PatchEmbed(nn.Layer): """ Image to Patch Embedding. """ def __init__( self, kernel_size: Tuple[int, int] = (16, 16), stride: Tuple[int, int] = (16, 16), padding: Tuple[int, int] = (0, 0), in_chans: int = 3, embed_dim: int = 768, ) -> None: """ Args: kernel_size (Tuple): kernel size of the projection layer. stride (Tuple): stride of the projection layer. padding (Tuple): padding size of the projection layer. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. """ super().__init__() self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding, weight_attr=True, bias_attr=True, ) def forward(self, x): x = self.proj(x) # B C H W -> B H W C x = x.transpose([0, 2, 3, 1]) return x def _build_vary( encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, image_size, is_formula=False, ): prompt_embed_dim = 256 vit_patch_size = 16 image_embedding_size = image_size // vit_patch_size image_encoder = ImageEncoderViT( depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(paddle.nn.LayerNorm, epsilon=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos=True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, is_formula=is_formula, ) return image_encoder class Vary_VIT_B(nn.Layer): def __init__( self, in_channels=3, image_size=768, encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], ): super().__init__() self.vision_tower_high = _build_vary( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], image_size=image_size, ) self.out_channels = 1024 def forward(self, input_data): pixel_values = input_data num_channels = pixel_values.shape[1] if num_channels == 1: pixel_values = paddle.repeat_interleave(pixel_values, repeats=3, axis=1) cnn_feature = self.vision_tower_high(pixel_values) cnn_feature = cnn_feature.flatten(2).transpose([0, 2, 1]) return cnn_feature class Vary_VIT_B_Formula(nn.Layer): def __init__( self, in_channels=3, image_size=768, encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], ): """ Vary_VIT_B_Formula Args: in_channels (int): Number of input channels. Default is 3 (for RGB images). image_size (int): Size of the input image. Default is 768. encoder_embed_dim (int): Dimension of the encoder's embedding. Default is 768. encoder_depth (int): Number of layers (depth) in the encoder. Default is 12. encoder_num_heads (int): Number of attention heads in the encoder. Default is 12. encoder_global_attn_indexes (list): List of indices specifying which encoder layers use global attention. Default is [2, 5, 8, 11]. Returns: model: nn.Layer. Specific `Vary_VIT_B_Formula` model with defined architecture. """ super(Vary_VIT_B_Formula, self).__init__() self.vision_tower_high = _build_vary( encoder_embed_dim=encoder_embed_dim, encoder_depth=encoder_depth, encoder_num_heads=encoder_num_heads, encoder_global_attn_indexes=[2, 5, 8, 11], image_size=image_size, is_formula=True, ) self.mm_projector_vary = nn.Linear(1024, 1024) self.out_channels = 1024 def forward(self, input_data): if self.training: pixel_values, label, attention_mask = input_data else: if isinstance(input_data, list): pixel_values = input_data[0] else: pixel_values = input_data num_channels = pixel_values.shape[1] if num_channels == 1: pixel_values = paddle.repeat_interleave(pixel_values, repeats=3, axis=1) cnn_feature = self.vision_tower_high(pixel_values) cnn_feature = cnn_feature.flatten(2).transpose([0, 2, 1]) cnn_feature = self.mm_projector_vary(cnn_feature) donut_swin_output = DonutSwinModelOutput( last_hidden_state=cnn_feature, pooler_output=None, hidden_states=None, attentions=None, reshaped_hidden_states=None, ) if self.training: return donut_swin_output, label, attention_mask else: return donut_swin_output