# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import ParamAttr from paddle.nn.initializer import KaimingNormal import numpy as np import paddle import paddle.nn as nn from paddle.nn.initializer import TruncatedNormal, Constant, Normal trunc_normal_ = TruncatedNormal(std=0.02) normal_ = Normal zeros_ = Constant(value=0.0) ones_ = Constant(value=1.0) def drop_path(x, drop_prob=0.0, training=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... """ if drop_prob == 0.0 or not training: return x keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype) shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype) random_tensor = paddle.floor(random_tensor) # binarize output = x.divide(keep_prob) * random_tensor return output class DropPath(nn.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Identity(nn.Layer): def __init__(self): super(Identity, self).__init__() def forward(self, input): return input class Mlp(nn.Layer): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ConvBNLayer(nn.Layer): def __init__( self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, bias_attr=False, groups=1, act=nn.GELU, ): super().__init__() self.conv = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()), bias_attr=bias_attr, ) self.norm = nn.BatchNorm2D(out_channels) self.act = act() def forward(self, inputs): out = self.conv(inputs) out = self.norm(out) out = self.act(out) return out class Attention(nn.Layer): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads self.dim = dim self.head_dim = dim // num_heads self.scale = qk_scale or self.head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): qkv = ( self.qkv(x) .reshape((0, -1, 3, self.num_heads, self.head_dim)) .transpose((2, 0, 3, 1, 4)) ) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale attn = nn.functional.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((0, -1, self.dim)) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6, ): super().__init__() self.norm1 = norm_layer(dim, epsilon=epsilon) self.mixer = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() self.norm2 = norm_layer(dim, epsilon=epsilon) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp_ratio = mlp_ratio self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) def forward(self, x): x = self.norm1(x + self.drop_path(self.mixer(x))) x = self.norm2(x + self.drop_path(self.mlp(x))) return x class ConvBlock(nn.Layer): def __init__( self, dim, num_heads, mlp_ratio=4.0, drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, epsilon=1e-6, ): super().__init__() mlp_hidden_dim = int(dim * mlp_ratio) self.norm1 = norm_layer(dim, epsilon=epsilon) self.mixer = nn.Conv2D( dim, dim, 5, 1, 2, groups=num_heads, weight_attr=ParamAttr(initializer=KaimingNormal()), ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() self.norm2 = norm_layer(dim, epsilon=epsilon) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) def forward(self, x): C, H, W = x.shape[1:] x = x + self.drop_path(self.mixer(x)) x = self.norm1(x.flatten(2).transpose([0, 2, 1])) x = self.norm2(x + self.drop_path(self.mlp(x))) x = x.transpose([0, 2, 1]).reshape([0, C, H, W]) return x class FlattenTranspose(nn.Layer): def forward(self, x): return x.flatten(2).transpose([0, 2, 1]) class SubSample2D(nn.Layer): def __init__( self, in_channels, out_channels, stride=[2, 1], ): super().__init__() self.conv = nn.Conv2D( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), ) self.norm = nn.LayerNorm(out_channels) def forward(self, x, sz): # print(x.shape) x = self.conv(x) C, H, W = x.shape[1:] x = self.norm(x.flatten(2).transpose([0, 2, 1])) x = x.transpose([0, 2, 1]).reshape([0, C, H, W]) return x, [H, W] class SubSample1D(nn.Layer): def __init__( self, in_channels, out_channels, stride=[2, 1], ): super().__init__() self.conv = nn.Conv2D( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), ) self.norm = nn.LayerNorm(out_channels) def forward(self, x, sz): C = x.shape[-1] x = x.transpose([0, 2, 1]).reshape([0, C, sz[0], sz[1]]) x = self.conv(x) C, H, W = x.shape[1:] x = self.norm(x.flatten(2).transpose([0, 2, 1])) return x, [H, W] class IdentitySize(nn.Layer): def forward(self, x, sz): return x, sz class SVTRStage(nn.Layer): def __init__( self, dim=64, out_dim=256, depth=3, mixer=["Local"] * 3, sub_k=[2, 1], num_heads=2, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path=[0.1] * 3, norm_layer=nn.LayerNorm, act=nn.GELU, eps=1e-6, downsample=None, **kwargs, ): super().__init__() self.dim = dim conv_block_num = sum([1 if mix == "Conv" else 0 for mix in mixer]) blocks = [] for i in range(depth): if mixer[i] == "Conv": blocks.append( ConvBlock( dim=dim, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop_rate, act_layer=act, drop_path=drop_path[i], norm_layer=norm_layer, epsilon=eps, ) ) else: blocks.append( Block( dim=dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer=act, attn_drop=attn_drop_rate, drop_path=drop_path[i], norm_layer=norm_layer, epsilon=eps, ) ) if i == conv_block_num - 1 and mixer[-1] != "Conv": blocks.append(FlattenTranspose()) self.blocks = nn.Sequential(*blocks) if downsample: if mixer[-1] == "Conv": self.downsample = SubSample2D(dim, out_dim, stride=sub_k) elif mixer[-1] == "Global": self.downsample = SubSample1D(dim, out_dim, stride=sub_k) else: self.downsample = IdentitySize() def forward(self, x, sz): x = self.blocks(x) x, sz = self.downsample(x, sz) return x, sz class ADDPosEmbed(nn.Layer): def __init__(self, feat_max_size=[8, 32], embed_dim=768): super().__init__() pos_embed = paddle.zeros( [1, feat_max_size[0] * feat_max_size[1], embed_dim], dtype=paddle.float32 ) trunc_normal_(pos_embed) pos_embed = pos_embed.transpose([0, 2, 1]).reshape( [1, embed_dim, feat_max_size[0], feat_max_size[1]] ) self.pos_embed = self.create_parameter( [1, embed_dim, feat_max_size[0], feat_max_size[1]] ) self.add_parameter("pos_embed", self.pos_embed) self.pos_embed.set_value(pos_embed) def forward(self, x): sz = x.shape[2:] x = x + self.pos_embed[:, :, : sz[0], : sz[1]] return x class POPatchEmbed(nn.Layer): """Image to Patch Embedding""" def __init__( self, in_channels=3, feat_max_size=[8, 32], embed_dim=768, use_pos_embed=False, flatten=False, ): super().__init__() patch_embed = [ ConvBNLayer( in_channels=in_channels, out_channels=embed_dim // 2, kernel_size=3, stride=2, padding=1, act=nn.GELU, bias_attr=None, ), ConvBNLayer( in_channels=embed_dim // 2, out_channels=embed_dim, kernel_size=3, stride=2, padding=1, act=nn.GELU, bias_attr=None, ), ] if use_pos_embed: patch_embed.append(ADDPosEmbed(feat_max_size, embed_dim)) if flatten: patch_embed.append(FlattenTranspose()) self.patch_embed = nn.Sequential(*patch_embed) def forward(self, x): sz = x.shape[2:] x = self.patch_embed(x) return x, [sz[0] // 4, sz[1] // 4] class LastStage(nn.Layer): def __init__(self, in_channels, out_channels, last_drop, out_char_num): super().__init__() self.last_conv = nn.Linear(in_channels, out_channels, bias_attr=False) self.hardswish = nn.Hardswish() self.dropout = nn.Dropout(p=last_drop, mode="downscale_in_infer") def forward(self, x, sz): x = x.reshape([0, sz[0], sz[1], x.shape[-1]]) x = x.mean(1) x = self.last_conv(x) x = self.hardswish(x) x = self.dropout(x) return x, [1, sz[1]] class OutPool(nn.Layer): def __init__(self): super().__init__() def forward(self, x, sz): C = x.shape[-1] x = x.transpose([0, 2, 1]).reshape([0, C, sz[0], sz[1]]) x = nn.functional.avg_pool2d(x, [sz[0], 2]) return x, [1, sz[1] // 2] class Feat2D(nn.Layer): def __init__(self): super().__init__() def forward(self, x, sz): C = x.shape[-1] x = x.transpose([0, 2, 1]).reshape([0, C, sz[0], sz[1]]) return x, sz class SVTRv2(nn.Layer): def __init__( self, max_sz=[32, 128], in_channels=3, out_channels=192, out_char_num=25, depths=[3, 6, 3], dims=[64, 128, 256], mixer=[["Conv"] * 3, ["Conv"] * 3 + ["Global"] * 3, ["Global"] * 3], use_pos_embed=False, sub_k=[[1, 1], [2, 1], [1, 1]], num_heads=[2, 4, 8], mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0.0, last_drop=0.1, attn_drop_rate=0.0, drop_path_rate=0.1, norm_layer=nn.LayerNorm, act=nn.GELU, last_stage=False, eps=1e-6, use_pool=False, feat2d=False, **kwargs, ): super().__init__() num_stages = len(depths) self.num_features = dims[-1] feat_max_size = [max_sz[0] // 4, max_sz[1] // 4] self.pope = POPatchEmbed( in_channels=in_channels, feat_max_size=feat_max_size, embed_dim=dims[0], use_pos_embed=use_pos_embed, flatten=mixer[0][0] != "Conv", ) dpr = np.linspace(0, drop_path_rate, sum(depths)) # stochastic depth decay rule self.stages = nn.LayerList() for i_stage in range(num_stages): stage = SVTRStage( dim=dims[i_stage], out_dim=dims[i_stage + 1] if i_stage < num_stages - 1 else 0, depth=depths[i_stage], mixer=mixer[i_stage], sub_k=sub_k[i_stage], num_heads=num_heads[i_stage], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_stage]) : sum(depths[: i_stage + 1])], norm_layer=norm_layer, act=act, downsample=False if i_stage == num_stages - 1 else True, eps=eps, ) self.stages.append(stage) self.out_channels = self.num_features self.last_stage = last_stage if last_stage: self.out_channels = out_channels self.stages.append( LastStage(self.num_features, out_channels, last_drop, out_char_num) ) if use_pool: self.stages.append(OutPool()) if feat2d: self.stages.append(Feat2D()) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) def forward(self, x): x, sz = self.pope(x) for stage in self.stages: x, sz = stage(x, sz) return x