69 lines
1.7 KiB
Python
69 lines
1.7 KiB
Python
import pytest
|
|
|
|
from paddleocr import FormulaRecognitionPipeline
|
|
from ..testing_utils import (
|
|
TEST_DATA_DIR,
|
|
check_simple_inference_result,
|
|
check_wrapper_simple_inference_param_forwarding,
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def formula_recognition_engine() -> FormulaRecognitionPipeline:
|
|
return FormulaRecognitionPipeline()
|
|
|
|
|
|
# TODO: Should we separate unit tests and integration tests?
|
|
@pytest.mark.parametrize(
|
|
"image_path",
|
|
[
|
|
TEST_DATA_DIR / "doc_with_formula.png",
|
|
],
|
|
)
|
|
def test_predict(
|
|
formula_recognition_engine: FormulaRecognitionPipeline, image_path: str
|
|
) -> None:
|
|
"""
|
|
Test FormulaRecognitionPipeline's formula_recognition functionality.
|
|
|
|
Args:
|
|
formula_recognition_engine: An instance of `FormulaRecognitionPipeline`.
|
|
image_path: Path to the image to be processed.
|
|
"""
|
|
result = formula_recognition_engine.predict(str(image_path))
|
|
|
|
check_simple_inference_result(result)
|
|
res = result[0]
|
|
assert isinstance(res["formula_res_list"], list)
|
|
assert len(res["formula_res_list"]) > 0
|
|
|
|
|
|
# TODO: Also check passing `None`
|
|
@pytest.mark.parametrize(
|
|
"params",
|
|
[
|
|
{"use_doc_orientation_classify": False},
|
|
{"use_doc_unwarping": False},
|
|
{"use_layout_detection": False},
|
|
{"layout_threshold": 0.5},
|
|
{"layout_nms": True},
|
|
{"layout_unclip_ratio": 1.5},
|
|
{"layout_merge_bboxes_mode": "large"},
|
|
],
|
|
)
|
|
def test_predict_params(
|
|
monkeypatch,
|
|
formula_recognition_engine: FormulaRecognitionPipeline,
|
|
params: dict,
|
|
) -> None:
|
|
check_wrapper_simple_inference_param_forwarding(
|
|
monkeypatch,
|
|
formula_recognition_engine,
|
|
"paddlex_pipeline",
|
|
"dummy_path",
|
|
params,
|
|
)
|
|
|
|
|
|
# TODO: Test init params
|