PaddleOCR/doc/doc_ch/algorithm_rec_can.md

7.0 KiB
Raw Permalink Blame History

手写数学公式识别算法-CAN

1. 算法简介

论文信息:

When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition Bohan Li, Ye Yuan, Dingkang Liang, Xiao Liu, Zhilong Ji, Jinfeng Bai, Wenyu Liu, Xiang Bai ECCV, 2022

CAN使用CROHME手写公式数据集进行训练在对应测试集上的精度如下

模型 骨干网络 配置文件 ExpRate 下载链接
CAN DenseNet rec_d28_can.yml 51.72% 训练模型

2. 环境配置

请先参考《运行环境准备》配置PaddleOCR运行环境参考《项目克隆》克隆项目代码。

3. 模型训练、评估、预测

3.1 模型训练

请参考文本识别训练教程。PaddleOCR对代码进行了模块化训练CAN识别模型时需要更换配置文件CAN配置文件

启动训练

具体地,在完成数据准备后,便可以启动训练,训练命令如下:

#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_d28_can.yml

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_d28_can.yml

注意:

  • 我们提供的数据集,即CROHME数据集将手写公式存储为黑底白字的格式,若您自行准备的数据集与之相反,即以白底黑字模式存储,请在训练时做出如下修改
python3 tools/train.py -c configs/rec/rec_d28_can.yml -o Train.dataset.transforms.GrayImageChannelFormat.inverse=False
  • 默认每训练1个epoch1105次iteration进行1次评估若您更改训练的batch_size或更换数据集请在训练时作出如下修改
python3 tools/train.py -c configs/rec/rec_d28_can.yml -o Global.eval_batch_step=[0, {length_of_dataset//batch_size}]

3.2 评估

可下载已训练完成的模型文件,使用如下命令进行评估:

# 注意将pretrained_model的路径设置为本地路径。若使用自行训练保存的模型请注意修改路径和文件名为{path/to/weights}/{model_name}。
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams

3.3 预测

使用如下命令进行单张图片预测:

# 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c configs/rec/rec_d28_can.yml -o Architecture.Head.attdecoder.is_train=False Global.infer_img='./doc/datasets/crohme_demo/hme_00.jpg' Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams

# 预测文件夹下所有图像时可修改infer_img为文件夹如 Global.infer_img='./doc/datasets/crohme_demo/'。

4. 推理部署

4.1 Python推理

首先将训练得到best模型转换成inference model。这里以训练完成的模型为例模型下载地址 ),可以使用如下命令进行转换:

# 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/rec_d28_can.yml -o Global.pretrained_model=./rec_d28_can_train/best_accuracy.pdparams Global.save_inference_dir=./inference/rec_d28_can/ Architecture.Head.attdecoder.is_train=False

# 目前的静态图模型默认的输出长度最大为36如果您需要预测更长的序列请在导出模型时指定其输出序列为合适的值例如 Architecture.Head.max_text_length=72

注意:

  • 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的character_dict_path是否是所需要的字典文件。

转换成功后,在目录下有三个文件:

/inference/rec_d28_can/
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息可忽略
    └── inference.pdmodel           # 识别inference模型的program文件

执行如下命令进行模型推理:

python3 tools/infer/predict_rec.py --image_dir="./doc/datasets/crohme_demo/hme_00.jpg" --rec_algorithm="CAN" --rec_batch_num=1 --rec_model_dir="./inference/rec_d28_can/" --rec_char_dict_path="./ppocr/utils/dict/latex_symbol_dict.txt"

# 预测文件夹下所有图像时可修改image_dir为文件夹如 --image_dir='./doc/datasets/crohme_demo/'。

# 如果您需要在白底黑字的图片上进行预测,请设置 --rec_image_inverse=False

测试图片样例

执行命令后,上面图像的预测结果(识别的文本)会打印到屏幕上,示例如下:

Predicts of ./doc/imgs_hme/hme_00.jpg:['x _ { k } x x _ { k } + y _ { k } y x _ { k }', []]

注意

  • 需要注意预测图像为黑底白字,即手写公式部分为白色,背景为黑色的图片。
  • 在推理时需要设置参数rec_char_dict_path指定字典,如果您修改了字典,请修改该参数为您的字典文件。
  • 如果您修改了预处理方法,需修改tools/infer/predict_rec.py中CAN的预处理为您的预处理方法。

4.2 C++推理部署

由于C++预处理后处理还未支持CAN所以暂未支持

4.3 Serving服务化部署

暂不支持

4.4 更多推理部署

暂不支持

5. FAQ

  1. CROHME数据集来自于CAN源repo

引用

@misc{https://doi.org/10.48550/arxiv.2207.11463,
  doi = {10.48550/ARXIV.2207.11463},
  url = {https://arxiv.org/abs/2207.11463},
  author = {Li, Bohan and Yuan, Ye and Liang, Dingkang and Liu, Xiao and Ji, Zhilong and Bai, Jinfeng and Liu, Wenyu and Bai, Xiang},
  keywords = {Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}