239 lines
7.5 KiB
Python
239 lines
7.5 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
from paddle import nn
|
|
|
|
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
|
|
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
|
|
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction
|
|
from paddlenlp.transformers import AutoModel
|
|
|
|
__all__ = ["LayoutXLMForSer", "LayoutLMForSer"]
|
|
|
|
pretrained_model_dict = {
|
|
LayoutXLMModel: {
|
|
"base": "layoutxlm-base-uncased",
|
|
"vi": "vi-layoutxlm-base-uncased",
|
|
},
|
|
LayoutLMModel: {
|
|
"base": "layoutlm-base-uncased",
|
|
},
|
|
LayoutLMv2Model: {
|
|
"base": "layoutlmv2-base-uncased",
|
|
"vi": "vi-layoutlmv2-base-uncased",
|
|
},
|
|
}
|
|
|
|
|
|
class NLPBaseModel(nn.Layer):
|
|
def __init__(self,
|
|
base_model_class,
|
|
model_class,
|
|
mode="base",
|
|
type="ser",
|
|
pretrained=True,
|
|
checkpoints=None,
|
|
**kwargs):
|
|
super(NLPBaseModel, self).__init__()
|
|
if checkpoints is not None: # load the trained model
|
|
self.model = model_class.from_pretrained(checkpoints)
|
|
else: # load the pretrained-model
|
|
pretrained_model_name = pretrained_model_dict[base_model_class][
|
|
mode]
|
|
if pretrained is True:
|
|
base_model = base_model_class.from_pretrained(
|
|
pretrained_model_name)
|
|
else:
|
|
base_model = base_model_class.from_pretrained(pretrained)
|
|
if type == "ser":
|
|
self.model = model_class(
|
|
base_model, num_classes=kwargs["num_classes"], dropout=None)
|
|
else:
|
|
self.model = model_class(base_model, dropout=None)
|
|
self.out_channels = 1
|
|
self.use_visual_backbone = True
|
|
|
|
|
|
class LayoutLMForSer(NLPBaseModel):
|
|
def __init__(self,
|
|
num_classes,
|
|
pretrained=True,
|
|
checkpoints=None,
|
|
mode="base",
|
|
**kwargs):
|
|
super(LayoutLMForSer, self).__init__(
|
|
LayoutLMModel,
|
|
LayoutLMForTokenClassification,
|
|
mode,
|
|
"ser",
|
|
pretrained,
|
|
checkpoints,
|
|
num_classes=num_classes, )
|
|
self.use_visual_backbone = False
|
|
|
|
def forward(self, x):
|
|
x = self.model(
|
|
input_ids=x[0],
|
|
bbox=x[1],
|
|
attention_mask=x[2],
|
|
token_type_ids=x[3],
|
|
position_ids=None,
|
|
output_hidden_states=False)
|
|
return x
|
|
|
|
|
|
class LayoutLMv2ForSer(NLPBaseModel):
|
|
def __init__(self,
|
|
num_classes,
|
|
pretrained=True,
|
|
checkpoints=None,
|
|
mode="base",
|
|
**kwargs):
|
|
super(LayoutLMv2ForSer, self).__init__(
|
|
LayoutLMv2Model,
|
|
LayoutLMv2ForTokenClassification,
|
|
mode,
|
|
"ser",
|
|
pretrained,
|
|
checkpoints,
|
|
num_classes=num_classes)
|
|
if hasattr(self.model.layoutlmv2, "use_visual_backbone"
|
|
) and self.model.layoutlmv2.use_visual_backbone is False:
|
|
self.use_visual_backbone = False
|
|
|
|
def forward(self, x):
|
|
if self.use_visual_backbone is True:
|
|
image = x[4]
|
|
else:
|
|
image = None
|
|
x = self.model(
|
|
input_ids=x[0],
|
|
bbox=x[1],
|
|
attention_mask=x[2],
|
|
token_type_ids=x[3],
|
|
image=image,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
labels=None)
|
|
if self.training:
|
|
res = {"backbone_out": x[0]}
|
|
res.update(x[1])
|
|
return res
|
|
else:
|
|
return x
|
|
|
|
|
|
class LayoutXLMForSer(NLPBaseModel):
|
|
def __init__(self,
|
|
num_classes,
|
|
pretrained=True,
|
|
checkpoints=None,
|
|
mode="base",
|
|
**kwargs):
|
|
super(LayoutXLMForSer, self).__init__(
|
|
LayoutXLMModel,
|
|
LayoutXLMForTokenClassification,
|
|
mode,
|
|
"ser",
|
|
pretrained,
|
|
checkpoints,
|
|
num_classes=num_classes)
|
|
if hasattr(self.model.layoutxlm, "use_visual_backbone"
|
|
) and self.model.layoutxlm.use_visual_backbone is False:
|
|
self.use_visual_backbone = False
|
|
|
|
def forward(self, x):
|
|
if self.use_visual_backbone is True:
|
|
image = x[4]
|
|
else:
|
|
image = None
|
|
x = self.model(
|
|
input_ids=x[0],
|
|
bbox=x[1],
|
|
attention_mask=x[2],
|
|
token_type_ids=x[3],
|
|
image=image,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
labels=None)
|
|
if self.training:
|
|
res = {"backbone_out": x[0]}
|
|
res.update(x[1])
|
|
return res
|
|
else:
|
|
return x
|
|
|
|
|
|
class LayoutLMv2ForRe(NLPBaseModel):
|
|
def __init__(self, pretrained=True, checkpoints=None, mode="base",
|
|
**kwargs):
|
|
super(LayoutLMv2ForRe, self).__init__(
|
|
LayoutLMv2Model, LayoutLMv2ForRelationExtraction, mode, "re",
|
|
pretrained, checkpoints)
|
|
if hasattr(self.model.layoutlmv2, "use_visual_backbone"
|
|
) and self.model.layoutlmv2.use_visual_backbone is False:
|
|
self.use_visual_backbone = False
|
|
|
|
def forward(self, x):
|
|
x = self.model(
|
|
input_ids=x[0],
|
|
bbox=x[1],
|
|
attention_mask=x[2],
|
|
token_type_ids=x[3],
|
|
image=x[4],
|
|
position_ids=None,
|
|
head_mask=None,
|
|
labels=None,
|
|
entities=x[5],
|
|
relations=x[6])
|
|
return x
|
|
|
|
|
|
class LayoutXLMForRe(NLPBaseModel):
|
|
def __init__(self, pretrained=True, checkpoints=None, mode="base",
|
|
**kwargs):
|
|
super(LayoutXLMForRe, self).__init__(
|
|
LayoutXLMModel, LayoutXLMForRelationExtraction, mode, "re",
|
|
pretrained, checkpoints)
|
|
if hasattr(self.model.layoutxlm, "use_visual_backbone"
|
|
) and self.model.layoutxlm.use_visual_backbone is False:
|
|
self.use_visual_backbone = False
|
|
|
|
def forward(self, x):
|
|
if self.use_visual_backbone is True:
|
|
image = x[4]
|
|
entities = x[5]
|
|
relations = x[6]
|
|
else:
|
|
image = None
|
|
entities = x[4]
|
|
relations = x[5]
|
|
x = self.model(
|
|
input_ids=x[0],
|
|
bbox=x[1],
|
|
attention_mask=x[2],
|
|
token_type_ids=x[3],
|
|
image=image,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
labels=None,
|
|
entities=entities,
|
|
relations=relations)
|
|
return x
|