178 lines
5.7 KiB
Python
178 lines
5.7 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
|
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(__dir__)
|
|
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
|
|
|
|
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
|
|
|
import cv2
|
|
import json
|
|
import numpy as np
|
|
import time
|
|
|
|
import tools.infer.utility as utility
|
|
from ppocr.data import create_operators, transform
|
|
from ppocr.postprocess import build_post_process
|
|
from ppocr.utils.logging import get_logger
|
|
from ppocr.utils.visual import draw_ser_results
|
|
from ppocr.utils.utility import get_image_file_list, check_and_read
|
|
from ppstructure.utility import parse_args
|
|
|
|
from paddleocr import PaddleOCR
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
class SerPredictor(object):
|
|
def __init__(self, args):
|
|
self.ocr_engine = PaddleOCR(
|
|
use_angle_cls=args.use_angle_cls,
|
|
det_model_dir=args.det_model_dir,
|
|
rec_model_dir=args.rec_model_dir,
|
|
show_log=False,
|
|
use_gpu=args.use_gpu)
|
|
|
|
pre_process_list = [{
|
|
'VQATokenLabelEncode': {
|
|
'algorithm': args.kie_algorithm,
|
|
'class_path': args.ser_dict_path,
|
|
'contains_re': False,
|
|
'ocr_engine': self.ocr_engine,
|
|
'order_method': args.ocr_order_method,
|
|
}
|
|
}, {
|
|
'VQATokenPad': {
|
|
'max_seq_len': 512,
|
|
'return_attention_mask': True
|
|
}
|
|
}, {
|
|
'VQASerTokenChunk': {
|
|
'max_seq_len': 512,
|
|
'return_attention_mask': True
|
|
}
|
|
}, {
|
|
'Resize': {
|
|
'size': [224, 224]
|
|
}
|
|
}, {
|
|
'NormalizeImage': {
|
|
'std': [58.395, 57.12, 57.375],
|
|
'mean': [123.675, 116.28, 103.53],
|
|
'scale': '1',
|
|
'order': 'hwc'
|
|
}
|
|
}, {
|
|
'ToCHWImage': None
|
|
}, {
|
|
'KeepKeys': {
|
|
'keep_keys': [
|
|
'input_ids', 'bbox', 'attention_mask', 'token_type_ids',
|
|
'image', 'labels', 'segment_offset_id', 'ocr_info',
|
|
'entities'
|
|
]
|
|
}
|
|
}]
|
|
postprocess_params = {
|
|
'name': 'VQASerTokenLayoutLMPostProcess',
|
|
"class_path": args.ser_dict_path,
|
|
}
|
|
|
|
self.preprocess_op = create_operators(pre_process_list,
|
|
{'infer_mode': True})
|
|
self.postprocess_op = build_post_process(postprocess_params)
|
|
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
|
utility.create_predictor(args, 'ser', logger)
|
|
|
|
def __call__(self, img):
|
|
ori_im = img.copy()
|
|
data = {'image': img}
|
|
data = transform(data, self.preprocess_op)
|
|
if data[0] is None:
|
|
return None, 0
|
|
starttime = time.time()
|
|
|
|
for idx in range(len(data)):
|
|
if isinstance(data[idx], np.ndarray):
|
|
data[idx] = np.expand_dims(data[idx], axis=0)
|
|
else:
|
|
data[idx] = [data[idx]]
|
|
|
|
for idx in range(len(self.input_tensor)):
|
|
self.input_tensor[idx].copy_from_cpu(data[idx])
|
|
|
|
self.predictor.run()
|
|
|
|
outputs = []
|
|
for output_tensor in self.output_tensors:
|
|
output = output_tensor.copy_to_cpu()
|
|
outputs.append(output)
|
|
preds = outputs[0]
|
|
|
|
post_result = self.postprocess_op(
|
|
preds, segment_offset_ids=data[6], ocr_infos=data[7])
|
|
elapse = time.time() - starttime
|
|
return post_result, data, elapse
|
|
|
|
|
|
def main(args):
|
|
image_file_list = get_image_file_list(args.image_dir)
|
|
ser_predictor = SerPredictor(args)
|
|
count = 0
|
|
total_time = 0
|
|
|
|
os.makedirs(args.output, exist_ok=True)
|
|
with open(
|
|
os.path.join(args.output, 'infer.txt'), mode='w',
|
|
encoding='utf-8') as f_w:
|
|
for image_file in image_file_list:
|
|
img, flag, _ = check_and_read(image_file)
|
|
if not flag:
|
|
img = cv2.imread(image_file)
|
|
img = img[:, :, ::-1]
|
|
if img is None:
|
|
logger.info("error in loading image:{}".format(image_file))
|
|
continue
|
|
ser_res, _, elapse = ser_predictor(img)
|
|
ser_res = ser_res[0]
|
|
|
|
res_str = '{}\t{}\n'.format(
|
|
image_file,
|
|
json.dumps(
|
|
{
|
|
"ocr_info": ser_res,
|
|
}, ensure_ascii=False))
|
|
f_w.write(res_str)
|
|
|
|
img_res = draw_ser_results(
|
|
image_file,
|
|
ser_res,
|
|
font_path=args.vis_font_path, )
|
|
|
|
img_save_path = os.path.join(args.output,
|
|
os.path.basename(image_file))
|
|
cv2.imwrite(img_save_path, img_res)
|
|
logger.info("save vis result to {}".format(img_save_path))
|
|
if count > 0:
|
|
total_time += elapse
|
|
count += 1
|
|
logger.info("Predict time of {}: {}".format(image_file, elapse))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(parse_args())
|