228 lines
8.5 KiB
Python
228 lines
8.5 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import random
|
|
import ast
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
import numpy as np
|
|
from tools.infer.utility import draw_ocr_box_txt, str2bool, str2int_tuple, init_args as infer_args
|
|
import math
|
|
|
|
def init_args():
|
|
parser = infer_args()
|
|
|
|
# params for output
|
|
parser.add_argument("--output", type=str, default='./output')
|
|
# params for table structure
|
|
parser.add_argument("--table_max_len", type=int, default=488)
|
|
parser.add_argument("--table_algorithm", type=str, default='TableAttn')
|
|
parser.add_argument("--table_model_dir", type=str)
|
|
parser.add_argument(
|
|
"--merge_no_span_structure", type=str2bool, default=True)
|
|
parser.add_argument(
|
|
"--table_char_dict_path",
|
|
type=str,
|
|
default="../ppocr/utils/dict/table_structure_dict_ch.txt")
|
|
# params for layout
|
|
parser.add_argument("--layout_model_dir", type=str)
|
|
parser.add_argument(
|
|
"--layout_dict_path",
|
|
type=str,
|
|
default="../ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt")
|
|
parser.add_argument(
|
|
"--layout_score_threshold",
|
|
type=float,
|
|
default=0.5,
|
|
help="Threshold of score.")
|
|
parser.add_argument(
|
|
"--layout_nms_threshold",
|
|
type=float,
|
|
default=0.5,
|
|
help="Threshold of nms.")
|
|
# params for kie
|
|
parser.add_argument("--kie_algorithm", type=str, default='LayoutXLM')
|
|
parser.add_argument("--ser_model_dir", type=str)
|
|
parser.add_argument("--re_model_dir", type=str)
|
|
parser.add_argument("--use_visual_backbone", type=str2bool, default=True)
|
|
parser.add_argument(
|
|
"--ser_dict_path",
|
|
type=str,
|
|
default="../train_data/XFUND/class_list_xfun.txt")
|
|
# need to be None or tb-yx
|
|
parser.add_argument("--ocr_order_method", type=str, default=None)
|
|
# params for inference
|
|
parser.add_argument(
|
|
"--mode",
|
|
type=str,
|
|
choices=['structure', 'kie'],
|
|
default='structure',
|
|
help='structure and kie is supported')
|
|
parser.add_argument(
|
|
"--image_orientation",
|
|
type=bool,
|
|
default=False,
|
|
help='Whether to enable image orientation recognition')
|
|
parser.add_argument(
|
|
"--layout",
|
|
type=str2bool,
|
|
default=True,
|
|
help='Whether to enable layout analysis')
|
|
parser.add_argument(
|
|
"--table",
|
|
type=str2bool,
|
|
default=True,
|
|
help='In the forward, whether the table area uses table recognition')
|
|
parser.add_argument(
|
|
"--ocr",
|
|
type=str2bool,
|
|
default=True,
|
|
help='In the forward, whether the non-table area is recognition by ocr')
|
|
# param for recovery
|
|
parser.add_argument(
|
|
"--recovery",
|
|
type=str2bool,
|
|
default=False,
|
|
help='Whether to enable layout of recovery')
|
|
parser.add_argument(
|
|
"--use_pdf2docx_api",
|
|
type=str2bool,
|
|
default=False,
|
|
help='Whether to use pdf2docx api')
|
|
parser.add_argument(
|
|
"--invert",
|
|
type=str2bool,
|
|
default=False,
|
|
help='Whether to invert image before processing')
|
|
parser.add_argument(
|
|
"--binarize",
|
|
type=str2bool,
|
|
default=False,
|
|
help='Whether to threshold binarize image before processing')
|
|
parser.add_argument(
|
|
"--alphacolor",
|
|
type=str2int_tuple,
|
|
default=(255, 255, 255),
|
|
help='Replacement color for the alpha channel, if the latter is present; R,G,B integers')
|
|
|
|
return parser
|
|
|
|
|
|
def parse_args():
|
|
parser = init_args()
|
|
return parser.parse_args()
|
|
|
|
|
|
def draw_structure_result(image, result, font_path):
|
|
if isinstance(image, np.ndarray):
|
|
image = Image.fromarray(image)
|
|
boxes, txts, scores = [], [], []
|
|
|
|
img_layout = image.copy()
|
|
draw_layout = ImageDraw.Draw(img_layout)
|
|
text_color = (255, 255, 255)
|
|
text_background_color = (80, 127, 255)
|
|
catid2color = {}
|
|
font_size = 15
|
|
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
|
|
|
|
for region in result:
|
|
if region['type'] not in catid2color:
|
|
box_color = (random.randint(0, 255), random.randint(0, 255),
|
|
random.randint(0, 255))
|
|
catid2color[region['type']] = box_color
|
|
else:
|
|
box_color = catid2color[region['type']]
|
|
box_layout = region['bbox']
|
|
draw_layout.rectangle(
|
|
[(box_layout[0], box_layout[1]), (box_layout[2], box_layout[3])],
|
|
outline=box_color,
|
|
width=3)
|
|
text_w, text_h = font.getsize(region['type'])
|
|
draw_layout.rectangle(
|
|
[(box_layout[0], box_layout[1]),
|
|
(box_layout[0] + text_w, box_layout[1] + text_h)],
|
|
fill=text_background_color)
|
|
draw_layout.text(
|
|
(box_layout[0], box_layout[1]),
|
|
region['type'],
|
|
fill=text_color,
|
|
font=font)
|
|
|
|
if region['type'] == 'table':
|
|
pass
|
|
else:
|
|
for text_result in region['res']:
|
|
boxes.append(np.array(text_result['text_region']))
|
|
txts.append(text_result['text'])
|
|
scores.append(text_result['confidence'])
|
|
|
|
if 'text_word_region' in text_result:
|
|
for word_region in text_result['text_word_region']:
|
|
char_box = word_region
|
|
box_height = int(
|
|
math.sqrt((char_box[0][0] - char_box[3][0])**2 + (char_box[0][1] - char_box[3][1])**2))
|
|
box_width = int(
|
|
math.sqrt((char_box[0][0] - char_box[1][0])**2 + (char_box[0][1] - char_box[1][1])**2))
|
|
if box_height == 0 or box_width == 0:
|
|
continue
|
|
boxes.append(word_region)
|
|
txts.append("")
|
|
scores.append(1.0)
|
|
|
|
im_show = draw_ocr_box_txt(
|
|
img_layout, boxes, txts, scores, font_path=font_path, drop_score=0)
|
|
return im_show
|
|
|
|
def cal_ocr_word_box(rec_str, box, rec_word_info):
|
|
''' Calculate the detection frame for each word based on the results of recognition and detection of ocr'''
|
|
|
|
col_num, word_list, word_col_list, state_list = rec_word_info
|
|
box = box.tolist()
|
|
bbox_x_start = box[0][0]
|
|
bbox_x_end = box[1][0]
|
|
bbox_y_start = box[0][1]
|
|
bbox_y_end = box[2][1]
|
|
|
|
cell_width = (bbox_x_end - bbox_x_start)/col_num
|
|
|
|
word_box_list = []
|
|
word_box_content_list = []
|
|
cn_width_list = []
|
|
cn_col_list = []
|
|
for word, word_col, state in zip(word_list, word_col_list, state_list):
|
|
if state == 'cn':
|
|
if len(word_col) != 1:
|
|
char_seq_length = (word_col[-1] - word_col[0] + 1) * cell_width
|
|
char_width = char_seq_length/(len(word_col)-1)
|
|
cn_width_list.append(char_width)
|
|
cn_col_list += word_col
|
|
word_box_content_list += word
|
|
else:
|
|
cell_x_start = bbox_x_start + int(word_col[0] * cell_width)
|
|
cell_x_end = bbox_x_start + int((word_col[-1]+1) * cell_width)
|
|
cell = ((cell_x_start, bbox_y_start), (cell_x_end, bbox_y_start), (cell_x_end, bbox_y_end), (cell_x_start, bbox_y_end))
|
|
word_box_list.append(cell)
|
|
word_box_content_list.append("".join(word))
|
|
if len(cn_col_list) != 0:
|
|
if len(cn_width_list) != 0:
|
|
avg_char_width = np.mean(cn_width_list)
|
|
else:
|
|
avg_char_width = (bbox_x_end - bbox_x_start)/len(rec_str)
|
|
for center_idx in cn_col_list:
|
|
center_x = (center_idx+0.5)*cell_width
|
|
cell_x_start = max(int(center_x - avg_char_width/2), 0) + bbox_x_start
|
|
cell_x_end = min(int(center_x + avg_char_width/2), bbox_x_end-bbox_x_start) + bbox_x_start
|
|
cell = ((cell_x_start, bbox_y_start), (cell_x_end, bbox_y_start), (cell_x_end, bbox_y_end), (cell_x_start, bbox_y_end))
|
|
word_box_list.append(cell)
|
|
|
|
return word_box_content_list, word_box_list |