PaddleOCR/configs/rec/rec_efficientb3_fpn_pren.yml

93 lines
1.9 KiB
YAML

Global:
use_gpu: True
epoch_num: 8
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/rec/pren_new
save_epoch_step: 3
# evaluation is run every 2000 iterations after the 4000th iteration
eval_batch_step: [4000, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path:
max_text_length: &max_text_length 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_pren.txt
Optimizer:
name: Adadelta
lr:
name: Piecewise
decay_epochs: [2, 5, 7]
values: [0.5, 0.1, 0.01, 0.001]
Architecture:
model_type: rec
algorithm: PREN
in_channels: 3
Backbone:
name: EfficientNetb3_PREN
Neck:
name: PRENFPN
n_r: 5
d_model: 384
max_len: *max_text_length
dropout: 0.1
Head:
name: PRENHead
Loss:
name: PRENLoss
PostProcess:
name: PRENLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage:
img_mode: BGR
channel_first: False
- PRENLabelEncode:
- RecAug:
- PRENResizeImg:
image_shape: [64, 256] # h,w
- KeepKeys:
keep_keys: ['image', 'label']
loader:
shuffle: True
batch_size_per_card: 128
drop_last: True
num_workers: 8
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/validation/
transforms:
- DecodeImage:
img_mode: BGR
channel_first: False
- PRENLabelEncode:
- PRENResizeImg:
image_shape: [64, 256] # h,w
- KeepKeys:
keep_keys: ['image', 'label']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 64
num_workers: 8