PaddleOCR/ppocr/modeling/backbones/rec_svtrv2.py

576 lines
16 KiB
Python

# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
import numpy as np
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
trunc_normal_ = TruncatedNormal(std=0.02)
normal_ = Normal
zeros_ = Constant(value=0.0)
ones_ = Constant(value=1.0)
def drop_path(x, drop_prob=0.0, training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob, dtype=x.dtype)
shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
class Mlp(nn.Layer):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class ConvBNLayer(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
bias_attr=False,
groups=1,
act=nn.GELU,
):
super().__init__()
self.conv = nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
bias_attr=bias_attr,
)
self.norm = nn.BatchNorm2D(out_channels)
self.act = act()
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
out = self.act(out)
return out
class Attention(nn.Layer):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
self.dim = dim
self.head_dim = dim // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
qkv = (
self.qkv(x)
.reshape((0, -1, 3, self.num_heads, self.head_dim))
.transpose((2, 0, 3, 1, 4))
)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale
attn = nn.functional.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((0, -1, self.dim))
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
epsilon=1e-6,
):
super().__init__()
self.norm1 = norm_layer(dim, epsilon=epsilon)
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = norm_layer(dim, epsilon=epsilon)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp_ratio = mlp_ratio
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x):
x = self.norm1(x + self.drop_path(self.mixer(x)))
x = self.norm2(x + self.drop_path(self.mlp(x)))
return x
class ConvBlock(nn.Layer):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
epsilon=1e-6,
):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
self.norm1 = norm_layer(dim, epsilon=epsilon)
self.mixer = nn.Conv2D(
dim,
dim,
5,
1,
2,
groups=num_heads,
weight_attr=ParamAttr(initializer=KaimingNormal()),
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity()
self.norm2 = norm_layer(dim, epsilon=epsilon)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward(self, x):
C, H, W = x.shape[1:]
x = x + self.drop_path(self.mixer(x))
x = self.norm1(x.flatten(2).transpose([0, 2, 1]))
x = self.norm2(x + self.drop_path(self.mlp(x)))
x = x.transpose([0, 2, 1]).reshape([0, C, H, W])
return x
class FlattenTranspose(nn.Layer):
def forward(self, x):
return x.flatten(2).transpose([0, 2, 1])
class SubSample2D(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
stride=[2, 1],
):
super().__init__()
self.conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
weight_attr=ParamAttr(initializer=KaimingNormal()),
)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x, sz):
# print(x.shape)
x = self.conv(x)
C, H, W = x.shape[1:]
x = self.norm(x.flatten(2).transpose([0, 2, 1]))
x = x.transpose([0, 2, 1]).reshape([0, C, H, W])
return x, [H, W]
class SubSample1D(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
stride=[2, 1],
):
super().__init__()
self.conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=3,
stride=stride,
padding=1,
weight_attr=ParamAttr(initializer=KaimingNormal()),
)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x, sz):
C = x.shape[-1]
x = x.transpose([0, 2, 1]).reshape([0, C, sz[0], sz[1]])
x = self.conv(x)
C, H, W = x.shape[1:]
x = self.norm(x.flatten(2).transpose([0, 2, 1]))
return x, [H, W]
class IdentitySize(nn.Layer):
def forward(self, x, sz):
return x, sz
class SVTRStage(nn.Layer):
def __init__(
self,
dim=64,
out_dim=256,
depth=3,
mixer=["Local"] * 3,
sub_k=[2, 1],
num_heads=2,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path=[0.1] * 3,
norm_layer=nn.LayerNorm,
act=nn.GELU,
eps=1e-6,
downsample=None,
**kwargs,
):
super().__init__()
self.dim = dim
conv_block_num = sum([1 if mix == "Conv" else 0 for mix in mixer])
blocks = []
for i in range(depth):
if mixer[i] == "Conv":
blocks.append(
ConvBlock(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
drop=drop_rate,
act_layer=act,
drop_path=drop_path[i],
norm_layer=norm_layer,
epsilon=eps,
)
)
else:
blocks.append(
Block(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
act_layer=act,
attn_drop=attn_drop_rate,
drop_path=drop_path[i],
norm_layer=norm_layer,
epsilon=eps,
)
)
if i == conv_block_num - 1 and mixer[-1] != "Conv":
blocks.append(FlattenTranspose())
self.blocks = nn.Sequential(*blocks)
if downsample:
if mixer[-1] == "Conv":
self.downsample = SubSample2D(dim, out_dim, stride=sub_k)
elif mixer[-1] == "Global":
self.downsample = SubSample1D(dim, out_dim, stride=sub_k)
else:
self.downsample = IdentitySize()
def forward(self, x, sz):
x = self.blocks(x)
x, sz = self.downsample(x, sz)
return x, sz
class ADDPosEmbed(nn.Layer):
def __init__(self, feat_max_size=[8, 32], embed_dim=768):
super().__init__()
pos_embed = paddle.zeros(
[1, feat_max_size[0] * feat_max_size[1], embed_dim], dtype=paddle.float32
)
trunc_normal_(pos_embed)
pos_embed = pos_embed.transpose([0, 2, 1]).reshape(
[1, embed_dim, feat_max_size[0], feat_max_size[1]]
)
self.pos_embed = self.create_parameter(
[1, embed_dim, feat_max_size[0], feat_max_size[1]]
)
self.add_parameter("pos_embed", self.pos_embed)
self.pos_embed.set_value(pos_embed)
def forward(self, x):
sz = x.shape[2:]
x = x + self.pos_embed[:, :, : sz[0], : sz[1]]
return x
class POPatchEmbed(nn.Layer):
"""Image to Patch Embedding"""
def __init__(
self,
in_channels=3,
feat_max_size=[8, 32],
embed_dim=768,
use_pos_embed=False,
flatten=False,
):
super().__init__()
patch_embed = [
ConvBNLayer(
in_channels=in_channels,
out_channels=embed_dim // 2,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias_attr=None,
),
ConvBNLayer(
in_channels=embed_dim // 2,
out_channels=embed_dim,
kernel_size=3,
stride=2,
padding=1,
act=nn.GELU,
bias_attr=None,
),
]
if use_pos_embed:
patch_embed.append(ADDPosEmbed(feat_max_size, embed_dim))
if flatten:
patch_embed.append(FlattenTranspose())
self.patch_embed = nn.Sequential(*patch_embed)
def forward(self, x):
sz = x.shape[2:]
x = self.patch_embed(x)
return x, [sz[0] // 4, sz[1] // 4]
class LastStage(nn.Layer):
def __init__(self, in_channels, out_channels, last_drop, out_char_num):
super().__init__()
self.last_conv = nn.Linear(in_channels, out_channels, bias_attr=False)
self.hardswish = nn.Hardswish()
self.dropout = nn.Dropout(p=last_drop, mode="downscale_in_infer")
def forward(self, x, sz):
x = x.reshape([0, sz[0], sz[1], x.shape[-1]])
x = x.mean(1)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
return x, [1, sz[1]]
class OutPool(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, x, sz):
C = x.shape[-1]
x = x.transpose([0, 2, 1]).reshape([0, C, sz[0], sz[1]])
x = nn.functional.avg_pool2d(x, [sz[0], 2])
return x, [1, sz[1] // 2]
class Feat2D(nn.Layer):
def __init__(self):
super().__init__()
def forward(self, x, sz):
C = x.shape[-1]
x = x.transpose([0, 2, 1]).reshape([0, C, sz[0], sz[1]])
return x, sz
class SVTRv2(nn.Layer):
def __init__(
self,
max_sz=[32, 128],
in_channels=3,
out_channels=192,
out_char_num=25,
depths=[3, 6, 3],
dims=[64, 128, 256],
mixer=[["Conv"] * 3, ["Conv"] * 3 + ["Global"] * 3, ["Global"] * 3],
use_pos_embed=False,
sub_k=[[1, 1], [2, 1], [1, 1]],
num_heads=[2, 4, 8],
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
last_drop=0.1,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
act=nn.GELU,
last_stage=False,
eps=1e-6,
use_pool=False,
feat2d=False,
**kwargs,
):
super().__init__()
num_stages = len(depths)
self.num_features = dims[-1]
feat_max_size = [max_sz[0] // 4, max_sz[1] // 4]
self.pope = POPatchEmbed(
in_channels=in_channels,
feat_max_size=feat_max_size,
embed_dim=dims[0],
use_pos_embed=use_pos_embed,
flatten=mixer[0][0] != "Conv",
)
dpr = np.linspace(0, drop_path_rate, sum(depths)) # stochastic depth decay rule
self.stages = nn.LayerList()
for i_stage in range(num_stages):
stage = SVTRStage(
dim=dims[i_stage],
out_dim=dims[i_stage + 1] if i_stage < num_stages - 1 else 0,
depth=depths[i_stage],
mixer=mixer[i_stage],
sub_k=sub_k[i_stage],
num_heads=num_heads[i_stage],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_stage]) : sum(depths[: i_stage + 1])],
norm_layer=norm_layer,
act=act,
downsample=False if i_stage == num_stages - 1 else True,
eps=eps,
)
self.stages.append(stage)
self.out_channels = self.num_features
self.last_stage = last_stage
if last_stage:
self.out_channels = out_channels
self.stages.append(
LastStage(self.num_features, out_channels, last_drop, out_char_num)
)
if use_pool:
self.stages.append(OutPool())
if feat2d:
self.stages.append(Feat2D())
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward(self, x):
x, sz = self.pope(x)
for stage in self.stages:
x, sz = stage(x, sz)
return x