PaddleOCR/tools/naive_sync_bn.py

122 lines
4.2 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.distributed as dist
import math
import paddle
import paddle.nn as nn
class _AllReduce(paddle.autograd.PyLayer):
@staticmethod
def forward(ctx, input):
input_list = [paddle.zeros_like(input) for k in range(dist.get_world_size())]
# Use allgather instead of allreduce since I don't trust in-place operations ..
dist.all_gather(input_list, input, sync_op=True)
inputs = paddle.stack(input_list, axis=0)
return paddle.sum(inputs, axis=0)
@staticmethod
def backward(ctx, grad_output):
dist.all_reduce(grad_output, sync_op=True)
return grad_output
def differentiable_all_reduce(input):
"""
Differentiable counterpart of `dist.all_reduce`.
"""
if (
not dist.is_available()
or not dist.is_initialized()
or dist.get_world_size() == 1
):
return input
return _AllReduce.apply(input)
class NaiveSyncBatchNorm(nn.BatchNorm2D):
def __init__(self, *args, stats_mode="", **kwargs):
super().__init__(*args, **kwargs)
assert stats_mode in ["", "N"]
self._stats_mode = stats_mode
def forward(self, input):
if dist.get_world_size() == 1 or not self.training:
return super().forward(input)
B, C = input.shape[0], input.shape[1]
mean = paddle.mean(input, axis=[0, 2, 3])
meansqr = paddle.mean(input * input, axis=[0, 2, 3])
if self._stats_mode == "":
assert (
B > 0
), 'SyncBatchNorm(stats_mode="") does not support zero batch size.'
vec = paddle.concat([mean, meansqr], axis=0)
vec = differentiable_all_reduce(vec) * (1.0 / dist.get_world_size())
mean, meansqr = paddle.split(vec, [C, C])
momentum = (
1 - self._momentum
) # NOTE: paddle has reverse momentum defination
else:
if B == 0:
vec = paddle.zeros([2 * C + 1], dtype=mean.dtype)
vec = vec + input.sum() # make sure there is gradient w.r.t input
else:
vec = paddle.concat(
[
mean,
meansqr,
paddle.ones([1], dtype=mean.dtype),
],
axis=0,
)
vec = differentiable_all_reduce(vec * B)
total_batch = vec[-1].detach()
momentum = total_batch.clip(max=1) * (
1 - self._momentum
) # no update if total_batch is 0
mean, meansqr, _ = paddle.split(
vec / total_batch.clip(min=1), [C, C, int(vec.shape[0] - 2 * C)]
) # avoid div-by-zero
var = meansqr - mean * mean
invstd = paddle.rsqrt(var + self._epsilon)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape([1, -1, 1, 1])
bias = bias.reshape([1, -1, 1, 1])
tmp_mean = self._mean + momentum * (mean.detach() - self._mean)
self._mean.set_value(tmp_mean)
tmp_variance = self._variance + (momentum * (var.detach() - self._variance))
self._variance.set_value(tmp_variance)
ret = input * scale + bias
return ret
def convert_syncbn(model):
for n, m in model.named_children():
if isinstance(m, nn.layer.norm._BatchNormBase):
syncbn = NaiveSyncBatchNorm(
m._num_features, m._momentum, m._epsilon, m._weight_attr, m._bias_attr
)
setattr(model, n, syncbn)
else:
convert_syncbn(m)