895 lines
31 KiB
Python
895 lines
31 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import absolute_import
|
||
from __future__ import division
|
||
from __future__ import print_function
|
||
|
||
import os
|
||
import gc
|
||
import sys
|
||
import platform
|
||
import yaml
|
||
import time
|
||
import datetime
|
||
import paddle
|
||
import paddle.distributed as dist
|
||
from tqdm import tqdm
|
||
import cv2
|
||
import numpy as np
|
||
import copy
|
||
from argparse import ArgumentParser, RawDescriptionHelpFormatter
|
||
|
||
from ppocr.utils.stats import TrainingStats
|
||
from ppocr.utils.save_load import save_model
|
||
from ppocr.utils.utility import print_dict, AverageMeter
|
||
from ppocr.utils.logging import get_logger
|
||
from ppocr.utils.loggers import WandbLogger, Loggers
|
||
from ppocr.utils import profiler
|
||
from ppocr.data import build_dataloader
|
||
from ppocr.utils.export_model import export
|
||
|
||
|
||
class ArgsParser(ArgumentParser):
|
||
def __init__(self):
|
||
super(ArgsParser, self).__init__(formatter_class=RawDescriptionHelpFormatter)
|
||
self.add_argument("-c", "--config", help="configuration file to use")
|
||
self.add_argument("-o", "--opt", nargs="+", help="set configuration options")
|
||
self.add_argument(
|
||
"-p",
|
||
"--profiler_options",
|
||
type=str,
|
||
default=None,
|
||
help="The option of profiler, which should be in format "
|
||
'"key1=value1;key2=value2;key3=value3".',
|
||
)
|
||
|
||
def parse_args(self, argv=None):
|
||
args = super(ArgsParser, self).parse_args(argv)
|
||
assert args.config is not None, "Please specify --config=configure_file_path."
|
||
args.opt = self._parse_opt(args.opt)
|
||
return args
|
||
|
||
def _parse_opt(self, opts):
|
||
config = {}
|
||
if not opts:
|
||
return config
|
||
for s in opts:
|
||
s = s.strip()
|
||
k, v = s.split("=")
|
||
config[k] = yaml.load(v, Loader=yaml.Loader)
|
||
return config
|
||
|
||
|
||
def load_config(file_path):
|
||
"""
|
||
Load config from yml/yaml file.
|
||
Args:
|
||
file_path (str): Path of the config file to be loaded.
|
||
Returns: global config
|
||
"""
|
||
_, ext = os.path.splitext(file_path)
|
||
assert ext in [".yml", ".yaml"], "only support yaml files for now"
|
||
config = yaml.load(open(file_path, "rb"), Loader=yaml.Loader)
|
||
return config
|
||
|
||
|
||
def merge_config(config, opts):
|
||
"""
|
||
Merge config into global config.
|
||
Args:
|
||
config (dict): Config to be merged.
|
||
Returns: global config
|
||
"""
|
||
for key, value in opts.items():
|
||
if "." not in key:
|
||
if isinstance(value, dict) and key in config:
|
||
config[key].update(value)
|
||
else:
|
||
config[key] = value
|
||
else:
|
||
sub_keys = key.split(".")
|
||
assert sub_keys[0] in config, (
|
||
"the sub_keys can only be one of global_config: {}, but get: "
|
||
"{}, please check your running command".format(
|
||
config.keys(), sub_keys[0]
|
||
)
|
||
)
|
||
cur = config[sub_keys[0]]
|
||
for idx, sub_key in enumerate(sub_keys[1:]):
|
||
if idx == len(sub_keys) - 2:
|
||
cur[sub_key] = value
|
||
else:
|
||
cur = cur[sub_key]
|
||
return config
|
||
|
||
|
||
def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False):
|
||
"""
|
||
Log error and exit when set use_gpu=true in paddlepaddle
|
||
cpu version.
|
||
"""
|
||
err = (
|
||
"Config {} cannot be set as true while your paddle "
|
||
"is not compiled with {} ! \nPlease try: \n"
|
||
"\t1. Install paddlepaddle to run model on {} \n"
|
||
"\t2. Set {} as false in config file to run "
|
||
"model on CPU"
|
||
)
|
||
|
||
try:
|
||
if use_gpu and use_xpu:
|
||
print("use_xpu and use_gpu can not both be true.")
|
||
if use_gpu and not paddle.is_compiled_with_cuda():
|
||
print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
|
||
sys.exit(1)
|
||
if use_xpu and not paddle.device.is_compiled_with_xpu():
|
||
print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
|
||
sys.exit(1)
|
||
if use_npu:
|
||
if (
|
||
int(paddle.version.major) != 0
|
||
and int(paddle.version.major) <= 2
|
||
and int(paddle.version.minor) <= 4
|
||
):
|
||
if not paddle.device.is_compiled_with_npu():
|
||
print(err.format("use_npu", "npu", "npu", "use_npu"))
|
||
sys.exit(1)
|
||
# is_compiled_with_npu() has been updated after paddle-2.4
|
||
else:
|
||
if not paddle.device.is_compiled_with_custom_device("npu"):
|
||
print(err.format("use_npu", "npu", "npu", "use_npu"))
|
||
sys.exit(1)
|
||
if use_mlu and not paddle.device.is_compiled_with_mlu():
|
||
print(err.format("use_mlu", "mlu", "mlu", "use_mlu"))
|
||
sys.exit(1)
|
||
except Exception as e:
|
||
pass
|
||
|
||
|
||
def to_float32(preds):
|
||
if isinstance(preds, dict):
|
||
for k in preds:
|
||
if isinstance(preds[k], dict) or isinstance(preds[k], list):
|
||
preds[k] = to_float32(preds[k])
|
||
elif isinstance(preds[k], paddle.Tensor):
|
||
preds[k] = preds[k].astype(paddle.float32)
|
||
elif isinstance(preds, list):
|
||
for k in range(len(preds)):
|
||
if isinstance(preds[k], dict):
|
||
preds[k] = to_float32(preds[k])
|
||
elif isinstance(preds[k], list):
|
||
preds[k] = to_float32(preds[k])
|
||
elif isinstance(preds[k], paddle.Tensor):
|
||
preds[k] = preds[k].astype(paddle.float32)
|
||
elif isinstance(preds, paddle.Tensor):
|
||
preds = preds.astype(paddle.float32)
|
||
return preds
|
||
|
||
|
||
def train(
|
||
config,
|
||
train_dataloader,
|
||
valid_dataloader,
|
||
device,
|
||
model,
|
||
loss_class,
|
||
optimizer,
|
||
lr_scheduler,
|
||
post_process_class,
|
||
eval_class,
|
||
pre_best_model_dict,
|
||
logger,
|
||
step_pre_epoch,
|
||
log_writer=None,
|
||
scaler=None,
|
||
amp_level="O2",
|
||
amp_custom_black_list=[],
|
||
amp_custom_white_list=[],
|
||
amp_dtype="float16",
|
||
):
|
||
cal_metric_during_train = config["Global"].get("cal_metric_during_train", False)
|
||
calc_epoch_interval = config["Global"].get("calc_epoch_interval", 1)
|
||
log_smooth_window = config["Global"]["log_smooth_window"]
|
||
epoch_num = config["Global"]["epoch_num"]
|
||
print_batch_step = config["Global"]["print_batch_step"]
|
||
eval_batch_step = config["Global"]["eval_batch_step"]
|
||
eval_batch_epoch = config["Global"].get("eval_batch_epoch", None)
|
||
profiler_options = config["profiler_options"]
|
||
print_mem_info = config["Global"].get("print_mem_info", True)
|
||
uniform_output_enabled = config["Global"].get("uniform_output_enabled", False)
|
||
|
||
global_step = 0
|
||
if "global_step" in pre_best_model_dict:
|
||
global_step = pre_best_model_dict["global_step"]
|
||
start_eval_step = 0
|
||
if isinstance(eval_batch_step, list) and len(eval_batch_step) >= 2:
|
||
start_eval_step = eval_batch_step[0] if not eval_batch_epoch else 0
|
||
eval_batch_step = (
|
||
eval_batch_step[1]
|
||
if not eval_batch_epoch
|
||
else step_pre_epoch * eval_batch_epoch
|
||
)
|
||
if len(valid_dataloader) == 0:
|
||
logger.info(
|
||
"No Images in eval dataset, evaluation during training "
|
||
"will be disabled"
|
||
)
|
||
start_eval_step = 1e111
|
||
logger.info(
|
||
"During the training process, after the {}th iteration, "
|
||
"an evaluation is run every {} iterations".format(
|
||
start_eval_step, eval_batch_step
|
||
)
|
||
)
|
||
save_epoch_step = config["Global"]["save_epoch_step"]
|
||
save_model_dir = config["Global"]["save_model_dir"]
|
||
if not os.path.exists(save_model_dir):
|
||
os.makedirs(save_model_dir)
|
||
main_indicator = eval_class.main_indicator
|
||
best_model_dict = {main_indicator: 0}
|
||
best_model_dict.update(pre_best_model_dict)
|
||
train_stats = TrainingStats(log_smooth_window, ["lr"])
|
||
model_average = False
|
||
model.train()
|
||
|
||
use_srn = config["Architecture"]["algorithm"] == "SRN"
|
||
extra_input_models = [
|
||
"SRN",
|
||
"NRTR",
|
||
"SAR",
|
||
"SEED",
|
||
"SVTR",
|
||
"SVTR_LCNet",
|
||
"SPIN",
|
||
"VisionLAN",
|
||
"RobustScanner",
|
||
"RFL",
|
||
"DRRG",
|
||
"SATRN",
|
||
"SVTR_HGNet",
|
||
"ParseQ",
|
||
"CPPD",
|
||
]
|
||
extra_input = False
|
||
if config["Architecture"]["algorithm"] == "Distillation":
|
||
for key in config["Architecture"]["Models"]:
|
||
extra_input = (
|
||
extra_input
|
||
or config["Architecture"]["Models"][key]["algorithm"]
|
||
in extra_input_models
|
||
)
|
||
else:
|
||
extra_input = config["Architecture"]["algorithm"] in extra_input_models
|
||
try:
|
||
model_type = config["Architecture"]["model_type"]
|
||
except:
|
||
model_type = None
|
||
|
||
algorithm = config["Architecture"]["algorithm"]
|
||
|
||
start_epoch = (
|
||
best_model_dict["start_epoch"] if "start_epoch" in best_model_dict else 1
|
||
)
|
||
|
||
total_samples = 0
|
||
train_reader_cost = 0.0
|
||
train_batch_cost = 0.0
|
||
reader_start = time.time()
|
||
eta_meter = AverageMeter()
|
||
|
||
max_iter = (
|
||
len(train_dataloader) - 1
|
||
if platform.system() == "Windows"
|
||
else len(train_dataloader)
|
||
)
|
||
|
||
for epoch in range(start_epoch, epoch_num + 1):
|
||
if train_dataloader.dataset.need_reset:
|
||
train_dataloader = build_dataloader(
|
||
config, "Train", device, logger, seed=epoch
|
||
)
|
||
max_iter = (
|
||
len(train_dataloader) - 1
|
||
if platform.system() == "Windows"
|
||
else len(train_dataloader)
|
||
)
|
||
|
||
for idx, batch in enumerate(train_dataloader):
|
||
model.train()
|
||
profiler.add_profiler_step(profiler_options)
|
||
train_reader_cost += time.time() - reader_start
|
||
if idx >= max_iter:
|
||
break
|
||
lr = optimizer.get_lr()
|
||
images = batch[0]
|
||
if use_srn:
|
||
model_average = True
|
||
# use amp
|
||
if scaler:
|
||
with paddle.amp.auto_cast(
|
||
level=amp_level,
|
||
custom_black_list=amp_custom_black_list,
|
||
custom_white_list=amp_custom_white_list,
|
||
dtype=amp_dtype,
|
||
):
|
||
if model_type == "table" or extra_input:
|
||
preds = model(images, data=batch[1:])
|
||
elif model_type in ["kie"]:
|
||
preds = model(batch)
|
||
elif algorithm in ["CAN"]:
|
||
preds = model(batch[:3])
|
||
elif algorithm in ["LaTeXOCR"]:
|
||
preds = model(batch)
|
||
else:
|
||
preds = model(images)
|
||
preds = to_float32(preds)
|
||
loss = loss_class(preds, batch)
|
||
avg_loss = loss["loss"]
|
||
scaled_avg_loss = scaler.scale(avg_loss)
|
||
scaled_avg_loss.backward()
|
||
scaler.minimize(optimizer, scaled_avg_loss)
|
||
else:
|
||
if model_type == "table" or extra_input:
|
||
preds = model(images, data=batch[1:])
|
||
elif model_type in ["kie", "sr"]:
|
||
preds = model(batch)
|
||
elif algorithm in ["CAN"]:
|
||
preds = model(batch[:3])
|
||
elif algorithm in ["LaTeXOCR"]:
|
||
preds = model(batch)
|
||
else:
|
||
preds = model(images)
|
||
loss = loss_class(preds, batch)
|
||
avg_loss = loss["loss"]
|
||
avg_loss.backward()
|
||
optimizer.step()
|
||
|
||
optimizer.clear_grad()
|
||
|
||
if (
|
||
cal_metric_during_train and epoch % calc_epoch_interval == 0
|
||
): # only rec and cls need
|
||
batch = [item.numpy() for item in batch]
|
||
if model_type in ["kie", "sr"]:
|
||
eval_class(preds, batch)
|
||
elif model_type in ["table"]:
|
||
post_result = post_process_class(preds, batch)
|
||
eval_class(post_result, batch)
|
||
elif algorithm in ["CAN"]:
|
||
model_type = "can"
|
||
eval_class(preds[0], batch[2:], epoch_reset=(idx == 0))
|
||
elif algorithm in ["LaTeXOCR"]:
|
||
model_type = "latexocr"
|
||
post_result = post_process_class(preds, batch[1], mode="train")
|
||
eval_class(post_result[0], post_result[1], epoch_reset=(idx == 0))
|
||
else:
|
||
if config["Loss"]["name"] in [
|
||
"MultiLoss",
|
||
"MultiLoss_v2",
|
||
]: # for multi head loss
|
||
post_result = post_process_class(
|
||
preds["ctc"], batch[1]
|
||
) # for CTC head out
|
||
elif config["Loss"]["name"] in ["VLLoss"]:
|
||
post_result = post_process_class(preds, batch[1], batch[-1])
|
||
else:
|
||
post_result = post_process_class(preds, batch[1])
|
||
eval_class(post_result, batch)
|
||
metric = eval_class.get_metric()
|
||
train_stats.update(metric)
|
||
|
||
train_batch_time = time.time() - reader_start
|
||
train_batch_cost += train_batch_time
|
||
eta_meter.update(train_batch_time)
|
||
global_step += 1
|
||
total_samples += len(images)
|
||
|
||
if not isinstance(lr_scheduler, float):
|
||
lr_scheduler.step()
|
||
|
||
# logger and visualdl
|
||
stats = {
|
||
k: float(v) if v.shape == [] else v.numpy().mean()
|
||
for k, v in loss.items()
|
||
}
|
||
stats["lr"] = lr
|
||
train_stats.update(stats)
|
||
|
||
if log_writer is not None and dist.get_rank() == 0:
|
||
log_writer.log_metrics(
|
||
metrics=train_stats.get(), prefix="TRAIN", step=global_step
|
||
)
|
||
|
||
if (global_step > 0 and global_step % print_batch_step == 0) or (
|
||
idx >= len(train_dataloader) - 1
|
||
):
|
||
logs = train_stats.log()
|
||
|
||
eta_sec = (
|
||
(epoch_num + 1 - epoch) * len(train_dataloader) - idx - 1
|
||
) * eta_meter.avg
|
||
eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
|
||
max_mem_reserved_str = ""
|
||
max_mem_allocated_str = ""
|
||
if paddle.device.is_compiled_with_cuda() and print_mem_info:
|
||
max_mem_reserved_str = f", max_mem_reserved: {paddle.device.cuda.max_memory_reserved() // (1024 ** 2)} MB,"
|
||
max_mem_allocated_str = f" max_mem_allocated: {paddle.device.cuda.max_memory_allocated() // (1024 ** 2)} MB"
|
||
strs = (
|
||
"epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: "
|
||
"{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, "
|
||
"ips: {:.5f} samples/s, eta: {}{}{}".format(
|
||
epoch,
|
||
epoch_num,
|
||
global_step,
|
||
logs,
|
||
train_reader_cost / print_batch_step,
|
||
train_batch_cost / print_batch_step,
|
||
total_samples / print_batch_step,
|
||
total_samples / train_batch_cost,
|
||
eta_sec_format,
|
||
max_mem_reserved_str,
|
||
max_mem_allocated_str,
|
||
)
|
||
)
|
||
logger.info(strs)
|
||
|
||
total_samples = 0
|
||
train_reader_cost = 0.0
|
||
train_batch_cost = 0.0
|
||
# eval
|
||
if (
|
||
global_step > start_eval_step
|
||
and (global_step - start_eval_step) % eval_batch_step == 0
|
||
and dist.get_rank() == 0
|
||
):
|
||
if model_average:
|
||
Model_Average = paddle.incubate.ModelAverage(
|
||
0.15,
|
||
parameters=model.parameters(),
|
||
min_average_window=10000,
|
||
max_average_window=15625,
|
||
)
|
||
Model_Average.apply()
|
||
cur_metric = eval(
|
||
model,
|
||
valid_dataloader,
|
||
post_process_class,
|
||
eval_class,
|
||
model_type,
|
||
extra_input=extra_input,
|
||
scaler=scaler,
|
||
amp_level=amp_level,
|
||
amp_custom_black_list=amp_custom_black_list,
|
||
amp_custom_white_list=amp_custom_white_list,
|
||
amp_dtype=amp_dtype,
|
||
)
|
||
cur_metric_str = "cur metric, {}".format(
|
||
", ".join(["{}: {}".format(k, v) for k, v in cur_metric.items()])
|
||
)
|
||
logger.info(cur_metric_str)
|
||
|
||
# logger metric
|
||
if log_writer is not None:
|
||
log_writer.log_metrics(
|
||
metrics=cur_metric, prefix="EVAL", step=global_step
|
||
)
|
||
|
||
if cur_metric[main_indicator] >= best_model_dict[main_indicator]:
|
||
best_model_dict.update(cur_metric)
|
||
best_model_dict["best_epoch"] = epoch
|
||
prefix = "best_accuracy"
|
||
if uniform_output_enabled:
|
||
export(
|
||
config,
|
||
model,
|
||
os.path.join(save_model_dir, prefix, "inference"),
|
||
)
|
||
gc.collect()
|
||
model_info = {"epoch": epoch, "metric": best_model_dict}
|
||
else:
|
||
model_info = None
|
||
save_model(
|
||
model,
|
||
optimizer,
|
||
(
|
||
os.path.join(save_model_dir, prefix)
|
||
if uniform_output_enabled
|
||
else save_model_dir
|
||
),
|
||
logger,
|
||
config,
|
||
is_best=True,
|
||
prefix=prefix,
|
||
save_model_info=model_info,
|
||
best_model_dict=best_model_dict,
|
||
epoch=epoch,
|
||
global_step=global_step,
|
||
)
|
||
best_str = "best metric, {}".format(
|
||
", ".join(
|
||
["{}: {}".format(k, v) for k, v in best_model_dict.items()]
|
||
)
|
||
)
|
||
logger.info(best_str)
|
||
# logger best metric
|
||
if log_writer is not None:
|
||
log_writer.log_metrics(
|
||
metrics={
|
||
"best_{}".format(main_indicator): best_model_dict[
|
||
main_indicator
|
||
]
|
||
},
|
||
prefix="EVAL",
|
||
step=global_step,
|
||
)
|
||
|
||
log_writer.log_model(
|
||
is_best=True, prefix="best_accuracy", metadata=best_model_dict
|
||
)
|
||
|
||
reader_start = time.time()
|
||
if dist.get_rank() == 0:
|
||
prefix = "latest"
|
||
if uniform_output_enabled:
|
||
export(config, model, os.path.join(save_model_dir, prefix, "inference"))
|
||
gc.collect()
|
||
model_info = {"epoch": epoch, "metric": best_model_dict}
|
||
else:
|
||
model_info = None
|
||
save_model(
|
||
model,
|
||
optimizer,
|
||
(
|
||
os.path.join(save_model_dir, prefix)
|
||
if uniform_output_enabled
|
||
else save_model_dir
|
||
),
|
||
logger,
|
||
config,
|
||
is_best=False,
|
||
prefix=prefix,
|
||
save_model_info=model_info,
|
||
best_model_dict=best_model_dict,
|
||
epoch=epoch,
|
||
global_step=global_step,
|
||
)
|
||
|
||
if log_writer is not None:
|
||
log_writer.log_model(is_best=False, prefix="latest")
|
||
|
||
if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
|
||
prefix = "iter_epoch_{}".format(epoch)
|
||
if uniform_output_enabled:
|
||
export(config, model, os.path.join(save_model_dir, prefix, "inference"))
|
||
gc.collect()
|
||
model_info = {"epoch": epoch, "metric": best_model_dict}
|
||
else:
|
||
model_info = None
|
||
save_model(
|
||
model,
|
||
optimizer,
|
||
(
|
||
os.path.join(save_model_dir, prefix)
|
||
if uniform_output_enabled
|
||
else save_model_dir
|
||
),
|
||
logger,
|
||
config,
|
||
is_best=False,
|
||
prefix=prefix,
|
||
save_model_info=model_info,
|
||
best_model_dict=best_model_dict,
|
||
epoch=epoch,
|
||
global_step=global_step,
|
||
done_flag=epoch == config["Global"]["epoch_num"],
|
||
)
|
||
if log_writer is not None:
|
||
log_writer.log_model(
|
||
is_best=False, prefix="iter_epoch_{}".format(epoch)
|
||
)
|
||
|
||
best_str = "best metric, {}".format(
|
||
", ".join(["{}: {}".format(k, v) for k, v in best_model_dict.items()])
|
||
)
|
||
logger.info(best_str)
|
||
if dist.get_rank() == 0 and log_writer is not None:
|
||
log_writer.close()
|
||
return
|
||
|
||
|
||
def eval(
|
||
model,
|
||
valid_dataloader,
|
||
post_process_class,
|
||
eval_class,
|
||
model_type=None,
|
||
extra_input=False,
|
||
scaler=None,
|
||
amp_level="O2",
|
||
amp_custom_black_list=[],
|
||
amp_custom_white_list=[],
|
||
amp_dtype="float16",
|
||
):
|
||
model.eval()
|
||
with paddle.no_grad():
|
||
total_frame = 0.0
|
||
total_time = 0.0
|
||
pbar = tqdm(
|
||
total=len(valid_dataloader), desc="eval model:", position=0, leave=True
|
||
)
|
||
max_iter = (
|
||
len(valid_dataloader) - 1
|
||
if platform.system() == "Windows"
|
||
else len(valid_dataloader)
|
||
)
|
||
sum_images = 0
|
||
for idx, batch in enumerate(valid_dataloader):
|
||
if idx >= max_iter:
|
||
break
|
||
images = batch[0]
|
||
start = time.time()
|
||
|
||
# use amp
|
||
if scaler:
|
||
with paddle.amp.auto_cast(
|
||
level=amp_level,
|
||
custom_black_list=amp_custom_black_list,
|
||
dtype=amp_dtype,
|
||
):
|
||
if model_type == "table" or extra_input:
|
||
preds = model(images, data=batch[1:])
|
||
elif model_type in ["kie"]:
|
||
preds = model(batch)
|
||
elif model_type in ["can"]:
|
||
preds = model(batch[:3])
|
||
elif model_type in ["latexocr"]:
|
||
preds = model(batch)
|
||
elif model_type in ["sr"]:
|
||
preds = model(batch)
|
||
sr_img = preds["sr_img"]
|
||
lr_img = preds["lr_img"]
|
||
else:
|
||
preds = model(images)
|
||
preds = to_float32(preds)
|
||
else:
|
||
if model_type == "table" or extra_input:
|
||
preds = model(images, data=batch[1:])
|
||
elif model_type in ["kie"]:
|
||
preds = model(batch)
|
||
elif model_type in ["can"]:
|
||
preds = model(batch[:3])
|
||
elif model_type in ["latexocr"]:
|
||
preds = model(batch)
|
||
elif model_type in ["sr"]:
|
||
preds = model(batch)
|
||
sr_img = preds["sr_img"]
|
||
lr_img = preds["lr_img"]
|
||
else:
|
||
preds = model(images)
|
||
|
||
batch_numpy = []
|
||
for item in batch:
|
||
if isinstance(item, paddle.Tensor):
|
||
batch_numpy.append(item.numpy())
|
||
else:
|
||
batch_numpy.append(item)
|
||
# Obtain usable results from post-processing methods
|
||
total_time += time.time() - start
|
||
# Evaluate the results of the current batch
|
||
if model_type in ["table", "kie"]:
|
||
if post_process_class is None:
|
||
eval_class(preds, batch_numpy)
|
||
else:
|
||
post_result = post_process_class(preds, batch_numpy)
|
||
eval_class(post_result, batch_numpy)
|
||
elif model_type in ["sr"]:
|
||
eval_class(preds, batch_numpy)
|
||
elif model_type in ["can"]:
|
||
eval_class(preds[0], batch_numpy[2:], epoch_reset=(idx == 0))
|
||
elif model_type in ["latexocr"]:
|
||
post_result = post_process_class(preds, batch[1], "eval")
|
||
eval_class(post_result[0], post_result[1], epoch_reset=(idx == 0))
|
||
else:
|
||
post_result = post_process_class(preds, batch_numpy[1])
|
||
eval_class(post_result, batch_numpy)
|
||
|
||
pbar.update(1)
|
||
total_frame += len(images)
|
||
sum_images += 1
|
||
# Get final metric,eg. acc or hmean
|
||
metric = eval_class.get_metric()
|
||
|
||
pbar.close()
|
||
model.train()
|
||
# Avoid ZeroDivisionError
|
||
if total_time > 0:
|
||
metric["fps"] = total_frame / total_time
|
||
else:
|
||
metric["fps"] = 0 # or set to a fallback value
|
||
return metric
|
||
|
||
|
||
def update_center(char_center, post_result, preds):
|
||
result, label = post_result
|
||
feats, logits = preds
|
||
logits = paddle.argmax(logits, axis=-1)
|
||
feats = feats.numpy()
|
||
logits = logits.numpy()
|
||
|
||
for idx_sample in range(len(label)):
|
||
if result[idx_sample][0] == label[idx_sample][0]:
|
||
feat = feats[idx_sample]
|
||
logit = logits[idx_sample]
|
||
for idx_time in range(len(logit)):
|
||
index = logit[idx_time]
|
||
if index in char_center.keys():
|
||
char_center[index][0] = (
|
||
char_center[index][0] * char_center[index][1] + feat[idx_time]
|
||
) / (char_center[index][1] + 1)
|
||
char_center[index][1] += 1
|
||
else:
|
||
char_center[index] = [feat[idx_time], 1]
|
||
return char_center
|
||
|
||
|
||
def get_center(model, eval_dataloader, post_process_class):
|
||
pbar = tqdm(total=len(eval_dataloader), desc="get center:")
|
||
max_iter = (
|
||
len(eval_dataloader) - 1
|
||
if platform.system() == "Windows"
|
||
else len(eval_dataloader)
|
||
)
|
||
char_center = dict()
|
||
for idx, batch in enumerate(eval_dataloader):
|
||
if idx >= max_iter:
|
||
break
|
||
images = batch[0]
|
||
start = time.time()
|
||
preds = model(images)
|
||
|
||
batch = [item.numpy() for item in batch]
|
||
# Obtain usable results from post-processing methods
|
||
post_result = post_process_class(preds, batch[1])
|
||
|
||
# update char_center
|
||
char_center = update_center(char_center, post_result, preds)
|
||
pbar.update(1)
|
||
|
||
pbar.close()
|
||
for key in char_center.keys():
|
||
char_center[key] = char_center[key][0]
|
||
return char_center
|
||
|
||
|
||
def preprocess(is_train=False):
|
||
FLAGS = ArgsParser().parse_args()
|
||
profiler_options = FLAGS.profiler_options
|
||
config = load_config(FLAGS.config)
|
||
config = merge_config(config, FLAGS.opt)
|
||
profile_dic = {"profiler_options": FLAGS.profiler_options}
|
||
config = merge_config(config, profile_dic)
|
||
|
||
if is_train:
|
||
# save_config
|
||
save_model_dir = config["Global"]["save_model_dir"]
|
||
os.makedirs(save_model_dir, exist_ok=True)
|
||
with open(os.path.join(save_model_dir, "config.yml"), "w") as f:
|
||
yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)
|
||
log_file = "{}/train.log".format(save_model_dir)
|
||
else:
|
||
log_file = None
|
||
|
||
log_ranks = config["Global"].get("log_ranks", "0")
|
||
logger = get_logger(log_file=log_file, log_ranks=log_ranks)
|
||
|
||
# check if set use_gpu=True in paddlepaddle cpu version
|
||
use_gpu = config["Global"].get("use_gpu", False)
|
||
use_xpu = config["Global"].get("use_xpu", False)
|
||
use_npu = config["Global"].get("use_npu", False)
|
||
use_mlu = config["Global"].get("use_mlu", False)
|
||
|
||
alg = config["Architecture"]["algorithm"]
|
||
assert alg in [
|
||
"EAST",
|
||
"DB",
|
||
"SAST",
|
||
"Rosetta",
|
||
"CRNN",
|
||
"STARNet",
|
||
"RARE",
|
||
"SRN",
|
||
"CLS",
|
||
"PGNet",
|
||
"Distillation",
|
||
"NRTR",
|
||
"TableAttn",
|
||
"SAR",
|
||
"PSE",
|
||
"SEED",
|
||
"SDMGR",
|
||
"LayoutXLM",
|
||
"LayoutLM",
|
||
"LayoutLMv2",
|
||
"PREN",
|
||
"FCE",
|
||
"SVTR",
|
||
"SVTR_LCNet",
|
||
"ViTSTR",
|
||
"ABINet",
|
||
"DB++",
|
||
"TableMaster",
|
||
"SPIN",
|
||
"VisionLAN",
|
||
"Gestalt",
|
||
"SLANet",
|
||
"RobustScanner",
|
||
"CT",
|
||
"RFL",
|
||
"DRRG",
|
||
"CAN",
|
||
"Telescope",
|
||
"SATRN",
|
||
"SVTR_HGNet",
|
||
"ParseQ",
|
||
"CPPD",
|
||
"LaTeXOCR",
|
||
]
|
||
|
||
if use_xpu:
|
||
device = "xpu:{0}".format(os.getenv("FLAGS_selected_xpus", 0))
|
||
elif use_npu:
|
||
device = "npu:{0}".format(os.getenv("FLAGS_selected_npus", 0))
|
||
elif use_mlu:
|
||
device = "mlu:{0}".format(os.getenv("FLAGS_selected_mlus", 0))
|
||
else:
|
||
device = "gpu:{}".format(dist.ParallelEnv().dev_id) if use_gpu else "cpu"
|
||
check_device(use_gpu, use_xpu, use_npu, use_mlu)
|
||
|
||
device = paddle.set_device(device)
|
||
|
||
config["Global"]["distributed"] = dist.get_world_size() != 1
|
||
|
||
loggers = []
|
||
|
||
if "use_visualdl" in config["Global"] and config["Global"]["use_visualdl"]:
|
||
logger.warning(
|
||
"You are using VisualDL, the VisualDL is deprecated and "
|
||
"removed in ppocr!"
|
||
)
|
||
log_writer = None
|
||
if (
|
||
"use_wandb" in config["Global"] and config["Global"]["use_wandb"]
|
||
) or "wandb" in config:
|
||
save_dir = config["Global"]["save_model_dir"]
|
||
wandb_writer_path = "{}/wandb".format(save_dir)
|
||
if "wandb" in config:
|
||
wandb_params = config["wandb"]
|
||
else:
|
||
wandb_params = dict()
|
||
wandb_params.update({"save_dir": save_dir})
|
||
log_writer = WandbLogger(**wandb_params, config=config)
|
||
loggers.append(log_writer)
|
||
else:
|
||
log_writer = None
|
||
print_dict(config, logger)
|
||
|
||
if loggers:
|
||
log_writer = Loggers(loggers)
|
||
else:
|
||
log_writer = None
|
||
|
||
logger.info("train with paddle {} and device {}".format(paddle.__version__, device))
|
||
return config, device, logger, log_writer
|