PaddleOCR/ppocr/utils/formula_utils/unimernet_data_convert.py

108 lines
3.7 KiB
Python

# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import glob
import argparse
from os.path import join
from tqdm import tqdm
def latexocr2paddleocr_train(image_path, math_unimernet_file, math_hwe_file, save_path):
convert_f = open(save_path, "w")
sub_dir = "UniMER-1M/images"
img_sub_dir = os.path.join(image_path, sub_dir)
with open(math_unimernet_file, "r") as f:
lines = f.readlines()
formula_num = len(lines)
for i, line in tqdm(enumerate(lines), total=formula_num):
image_name = "{0:07d}.png".format(i)
math_gt = line.strip()
image_p = os.path.join(img_sub_dir, image_name)
img_name_subdir = os.path.join(sub_dir, image_name)
if os.path.exists(image_p):
convert_f.writelines("{}\t{}\n".format(img_name_subdir, math_gt))
sub_dir = "HME100K/train_images"
img_sub_dir = os.path.join(image_path, sub_dir)
with open(math_hwe_file, "r") as f:
lines = f.readlines()
formula_num = len(lines)
for i, line in tqdm(enumerate(lines), total=formula_num):
img_name, math_gt = line.strip().split("\t")
image_path = os.path.join(img_sub_dir, img_name)
img_name_subdir = os.path.join(sub_dir, img_name)
convert_f.writelines("{}\t{}\n".format(img_name_subdir, math_gt))
convert_f.close()
def unimernet2paddleocr_test(image_path, math_file, save_path):
convert_f = open(save_path, "w")
with open(math_file, "r") as f:
# load maths which
lines = f.readlines()
formula_num = len(lines)
for i, line in tqdm(enumerate(lines), total=formula_num):
image_name = "{0:07d}.png".format(i)
math_gt = line.strip()
image_p = os.path.join(image_path, image_name)
if os.path.exists(image_p):
convert_f.writelines("{}\t{}\n".format(image_name, math_gt))
convert_f.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--image_dir",
type=str,
default=".",
help="Input_label or input path to be converted",
)
parser.add_argument(
"--unimernet_txt_path",
type=str,
default="",
help="Input_label or input path to be converted",
)
parser.add_argument(
"--hme100k_txt_path",
type=str,
default="",
help="Input_label or input path to be converted",
)
parser.add_argument(
"--output_path", type=str, default="out_label.txt", help="Output file name"
)
parser.add_argument(
"--datatype", type=str, default="out_label.txt", help="datatype"
)
args = parser.parse_args()
if args.datatype == "unimernet_train":
latexocr2paddleocr_train(
args.image_dir,
args.unimernet_txt_path,
args.hme100k_txt_path,
args.output_path,
)
elif args.datatype == "unimernet_test":
unimernet2paddleocr_test(
args.image_dir, args.unimernet_txt_path, args.output_path
)
else:
raise NotImplementedError("the datatype is not supported")