261 lines
10 KiB
Python
261 lines
10 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numpy as np
|
|
import cv2
|
|
import math
|
|
import os
|
|
import json
|
|
import random
|
|
import traceback
|
|
from paddle.io import Dataset
|
|
from .imaug import transform, create_operators
|
|
|
|
|
|
class SimpleDataSet(Dataset):
|
|
def __init__(self, config, mode, logger, seed=None):
|
|
super(SimpleDataSet, self).__init__()
|
|
self.logger = logger
|
|
self.mode = mode.lower()
|
|
|
|
global_config = config['Global']
|
|
dataset_config = config[mode]['dataset']
|
|
loader_config = config[mode]['loader']
|
|
|
|
self.delimiter = dataset_config.get('delimiter', '\t')
|
|
label_file_list = dataset_config.pop('label_file_list')
|
|
data_source_num = len(label_file_list)
|
|
ratio_list = dataset_config.get("ratio_list", 1.0)
|
|
if isinstance(ratio_list, (float, int)):
|
|
ratio_list = [float(ratio_list)] * int(data_source_num)
|
|
|
|
assert len(
|
|
ratio_list
|
|
) == data_source_num, "The length of ratio_list should be the same as the file_list."
|
|
self.data_dir = dataset_config['data_dir']
|
|
self.do_shuffle = loader_config['shuffle']
|
|
self.seed = seed
|
|
logger.info("Initialize indexs of datasets:%s" % label_file_list)
|
|
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
|
|
self.data_idx_order_list = list(range(len(self.data_lines)))
|
|
if self.mode == "train" and self.do_shuffle:
|
|
self.shuffle_data_random()
|
|
|
|
self.set_epoch_as_seed(self.seed, dataset_config)
|
|
|
|
self.ops = create_operators(dataset_config['transforms'], global_config)
|
|
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx",
|
|
2)
|
|
self.need_reset = True in [x < 1 for x in ratio_list]
|
|
|
|
def set_epoch_as_seed(self, seed, dataset_config):
|
|
if self.mode == 'train':
|
|
try:
|
|
dataset_config['transforms'][5]['MakeBorderMap'][
|
|
'epoch'] = seed if seed is not None else 0
|
|
dataset_config['transforms'][6]['MakeShrinkMap'][
|
|
'epoch'] = seed if seed is not None else 0
|
|
except Exception as E:
|
|
print(E)
|
|
return
|
|
|
|
def get_image_info_list(self, file_list, ratio_list):
|
|
if isinstance(file_list, str):
|
|
file_list = [file_list]
|
|
data_lines = []
|
|
for idx, file in enumerate(file_list):
|
|
with open(file, "rb") as f:
|
|
lines = f.readlines()
|
|
if self.mode == "train" or ratio_list[idx] < 1.0:
|
|
random.seed(self.seed)
|
|
lines = random.sample(lines,
|
|
round(len(lines) * ratio_list[idx]))
|
|
data_lines.extend(lines)
|
|
return data_lines
|
|
|
|
def shuffle_data_random(self):
|
|
random.seed(self.seed)
|
|
random.shuffle(self.data_lines)
|
|
return
|
|
|
|
def _try_parse_filename_list(self, file_name):
|
|
# multiple images -> one gt label
|
|
if len(file_name) > 0 and file_name[0] == "[":
|
|
try:
|
|
info = json.loads(file_name)
|
|
file_name = random.choice(info)
|
|
except:
|
|
pass
|
|
return file_name
|
|
|
|
def get_ext_data(self):
|
|
ext_data_num = 0
|
|
for op in self.ops:
|
|
if hasattr(op, 'ext_data_num'):
|
|
ext_data_num = getattr(op, 'ext_data_num')
|
|
break
|
|
load_data_ops = self.ops[:self.ext_op_transform_idx]
|
|
ext_data = []
|
|
|
|
while len(ext_data) < ext_data_num:
|
|
file_idx = self.data_idx_order_list[np.random.randint(self.__len__(
|
|
))]
|
|
data_line = self.data_lines[file_idx]
|
|
data_line = data_line.decode('utf-8')
|
|
substr = data_line.strip("\n").split(self.delimiter)
|
|
file_name = substr[0]
|
|
file_name = self._try_parse_filename_list(file_name)
|
|
label = substr[1]
|
|
img_path = os.path.join(self.data_dir, file_name)
|
|
data = {'img_path': img_path, 'label': label}
|
|
if not os.path.exists(img_path):
|
|
continue
|
|
with open(data['img_path'], 'rb') as f:
|
|
img = f.read()
|
|
data['image'] = img
|
|
data = transform(data, load_data_ops)
|
|
|
|
if data is None:
|
|
continue
|
|
if 'polys' in data.keys():
|
|
if data['polys'].shape[1] != 4:
|
|
continue
|
|
ext_data.append(data)
|
|
return ext_data
|
|
|
|
def __getitem__(self, idx):
|
|
file_idx = self.data_idx_order_list[idx]
|
|
data_line = self.data_lines[file_idx]
|
|
try:
|
|
data_line = data_line.decode('utf-8')
|
|
substr = data_line.strip("\n").split(self.delimiter)
|
|
file_name = substr[0]
|
|
file_name = self._try_parse_filename_list(file_name)
|
|
label = substr[1]
|
|
img_path = os.path.join(self.data_dir, file_name)
|
|
data = {'img_path': img_path, 'label': label}
|
|
if not os.path.exists(img_path):
|
|
raise Exception("{} does not exist!".format(img_path))
|
|
with open(data['img_path'], 'rb') as f:
|
|
img = f.read()
|
|
data['image'] = img
|
|
data['ext_data'] = self.get_ext_data()
|
|
outs = transform(data, self.ops)
|
|
except:
|
|
self.logger.error(
|
|
"When parsing line {}, error happened with msg: {}".format(
|
|
data_line, traceback.format_exc()))
|
|
outs = None
|
|
if outs is None:
|
|
# during evaluation, we should fix the idx to get same results for many times of evaluation.
|
|
rnd_idx = np.random.randint(self.__len__(
|
|
)) if self.mode == "train" else (idx + 1) % self.__len__()
|
|
return self.__getitem__(rnd_idx)
|
|
return outs
|
|
|
|
def __len__(self):
|
|
return len(self.data_idx_order_list)
|
|
|
|
|
|
class MultiScaleDataSet(SimpleDataSet):
|
|
def __init__(self, config, mode, logger, seed=None):
|
|
super(MultiScaleDataSet, self).__init__(config, mode, logger, seed)
|
|
self.ds_width = config[mode]['dataset'].get('ds_width', False)
|
|
if self.ds_width:
|
|
self.wh_aware()
|
|
|
|
def wh_aware(self):
|
|
data_line_new = []
|
|
wh_ratio = []
|
|
for lins in self.data_lines:
|
|
data_line_new.append(lins)
|
|
lins = lins.decode('utf-8')
|
|
name, label, w, h = lins.strip("\n").split(self.delimiter)
|
|
wh_ratio.append(float(w) / float(h))
|
|
|
|
self.data_lines = data_line_new
|
|
self.wh_ratio = np.array(wh_ratio)
|
|
self.wh_ratio_sort = np.argsort(self.wh_ratio)
|
|
self.data_idx_order_list = list(range(len(self.data_lines)))
|
|
|
|
def resize_norm_img(self, data, imgW, imgH, padding=True):
|
|
img = data['image']
|
|
h = img.shape[0]
|
|
w = img.shape[1]
|
|
if not padding:
|
|
resized_image = cv2.resize(
|
|
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
|
resized_w = imgW
|
|
else:
|
|
ratio = w / float(h)
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
resized_w = imgW
|
|
else:
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
resized_image = cv2.resize(img, (resized_w, imgH))
|
|
resized_image = resized_image.astype('float32')
|
|
|
|
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
padding_im = np.zeros((3, imgH, imgW), dtype=np.float32)
|
|
padding_im[:, :, :resized_w] = resized_image
|
|
valid_ratio = min(1.0, float(resized_w / imgW))
|
|
data['image'] = padding_im
|
|
data['valid_ratio'] = valid_ratio
|
|
return data
|
|
|
|
def __getitem__(self, properties):
|
|
# properites is a tuple, contains (width, height, index)
|
|
img_height = properties[1]
|
|
idx = properties[2]
|
|
if self.ds_width and properties[3] is not None:
|
|
wh_ratio = properties[3]
|
|
img_width = img_height * (1 if int(round(wh_ratio)) == 0 else
|
|
int(round(wh_ratio)))
|
|
file_idx = self.wh_ratio_sort[idx]
|
|
else:
|
|
file_idx = self.data_idx_order_list[idx]
|
|
img_width = properties[0]
|
|
wh_ratio = None
|
|
|
|
data_line = self.data_lines[file_idx]
|
|
try:
|
|
data_line = data_line.decode('utf-8')
|
|
substr = data_line.strip("\n").split(self.delimiter)
|
|
file_name = substr[0]
|
|
file_name = self._try_parse_filename_list(file_name)
|
|
label = substr[1]
|
|
img_path = os.path.join(self.data_dir, file_name)
|
|
data = {'img_path': img_path, 'label': label}
|
|
if not os.path.exists(img_path):
|
|
raise Exception("{} does not exist!".format(img_path))
|
|
with open(data['img_path'], 'rb') as f:
|
|
img = f.read()
|
|
data['image'] = img
|
|
data['ext_data'] = self.get_ext_data()
|
|
outs = transform(data, self.ops[:-1])
|
|
if outs is not None:
|
|
outs = self.resize_norm_img(outs, img_width, img_height)
|
|
outs = transform(outs, self.ops[-1:])
|
|
except:
|
|
self.logger.error(
|
|
"When parsing line {}, error happened with msg: {}".format(
|
|
data_line, traceback.format_exc()))
|
|
outs = None
|
|
if outs is None:
|
|
# during evaluation, we should fix the idx to get same results for many times of evaluation.
|
|
rnd_idx = (idx + 1) % self.__len__()
|
|
return self.__getitem__([img_width, img_height, rnd_idx, wh_ratio])
|
|
return outs
|