PaddleOCR/ppocr/data/latexocr_dataset.py

175 lines
6.3 KiB
Python

# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/lukas-blecher/LaTeX-OCR/blob/main/pix2tex/dataset/dataset.py
"""
import numpy as np
import cv2
import math
import os
import json
import pickle
import random
import traceback
import paddle
from paddle.io import Dataset
from .imaug.label_ops import LatexOCRLabelEncode
from .imaug import transform, create_operators
class LaTeXOCRDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
super(LaTeXOCRDataSet, self).__init__()
self.logger = logger
self.mode = mode.lower()
global_config = config["Global"]
dataset_config = config[mode]["dataset"]
loader_config = config[mode]["loader"]
pkl_path = dataset_config.pop("data")
self.data_dir = dataset_config["data_dir"]
self.min_dimensions = dataset_config.pop("min_dimensions")
self.max_dimensions = dataset_config.pop("max_dimensions")
self.batchsize = dataset_config.pop("batch_size_per_pair")
self.keep_smaller_batches = dataset_config.pop("keep_smaller_batches")
self.max_seq_len = global_config.pop("max_seq_len")
self.rec_char_dict_path = global_config.pop("rec_char_dict_path")
self.tokenizer = LatexOCRLabelEncode(self.rec_char_dict_path)
file = open(pkl_path, "rb")
data = pickle.load(file)
temp = {}
for k in data:
if (
self.min_dimensions[0] <= k[0] <= self.max_dimensions[0]
and self.min_dimensions[1] <= k[1] <= self.max_dimensions[1]
):
temp[k] = data[k]
self.data = temp
self.do_shuffle = loader_config["shuffle"]
self.seed = seed
if self.mode == "train" and self.do_shuffle:
random.seed(self.seed)
self.pairs = []
for k in self.data:
info = np.array(self.data[k], dtype=object)
p = (
paddle.randperm(len(info))
if self.mode == "train" and self.do_shuffle
else paddle.arange(len(info))
)
for i in range(0, len(info), self.batchsize):
batch = info[p[i : i + self.batchsize]]
if len(batch.shape) == 1:
batch = batch[None, :]
if len(batch) < self.batchsize and not self.keep_smaller_batches:
continue
self.pairs.append(batch)
if self.do_shuffle:
self.pairs = np.random.permutation(np.array(self.pairs, dtype=object))
else:
self.pairs = np.array(self.pairs, dtype=object)
self.size = len(self.pairs)
self.set_epoch_as_seed(self.seed, dataset_config)
self.ops = create_operators(dataset_config["transforms"], global_config)
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", 2)
self.need_reset = True
def set_epoch_as_seed(self, seed, dataset_config):
if self.mode == "train":
try:
border_map_id = [
index
for index, dictionary in enumerate(dataset_config["transforms"])
if "MakeBorderMap" in dictionary
][0]
shrink_map_id = [
index
for index, dictionary in enumerate(dataset_config["transforms"])
if "MakeShrinkMap" in dictionary
][0]
dataset_config["transforms"][border_map_id]["MakeBorderMap"][
"epoch"
] = (seed if seed is not None else 0)
dataset_config["transforms"][shrink_map_id]["MakeShrinkMap"][
"epoch"
] = (seed if seed is not None else 0)
except Exception as E:
print(E)
return
def shuffle_data_random(self):
random.seed(self.seed)
random.shuffle(self.data_lines)
return
def __getitem__(self, idx):
batch = self.pairs[idx]
eqs, ims = batch.T
try:
max_width, max_height, max_length = 0, 0, 0
images_transform = []
for file_name in ims:
img_path = os.path.join(self.data_dir, file_name)
data = {
"img_path": img_path,
}
with open(data["img_path"], "rb") as f:
img = f.read()
data["image"] = img
item = transform(data, self.ops)
images_transform.append(np.array(item[0]))
image_concat = np.concatenate(images_transform, axis=0)[:, np.newaxis, :, :]
images_transform = image_concat.astype(np.float32)
labels, attention_mask, max_length = self.tokenizer(list(eqs))
if self.max_seq_len < max_length:
rnd_idx = (
np.random.randint(self.__len__())
if self.mode == "train"
else (idx + 1) % self.__len__()
)
return self.__getitem__(rnd_idx)
return (images_transform, labels, attention_mask)
except:
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(
data["img_path"], traceback.format_exc()
)
)
outs = None
if outs is None:
# during evaluation, we should fix the idx to get same results for many times of evaluation.
rnd_idx = (
np.random.randint(self.__len__())
if self.mode == "train"
else (idx + 1) % self.__len__()
)
return self.__getitem__(rnd_idx)
return outs
def __len__(self):
return self.size