145 lines
4.3 KiB
Python
145 lines
4.3 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/FangShancheng/ABINet/tree/main/modules
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle import ParamAttr
|
|
from paddle.nn.initializer import KaimingNormal
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
import numpy as np
|
|
import math
|
|
|
|
__all__ = ["ResNet45"]
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
return nn.Conv2D(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=1,
|
|
stride=1,
|
|
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
|
bias_attr=False)
|
|
|
|
|
|
def conv3x3(in_channel, out_channel, stride=1):
|
|
return nn.Conv2D(
|
|
in_channel,
|
|
out_channel,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
|
bias_attr=False)
|
|
|
|
|
|
class BasicBlock(nn.Layer):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_channels, channels, stride=1, downsample=None):
|
|
super().__init__()
|
|
self.conv1 = conv1x1(in_channels, channels)
|
|
self.bn1 = nn.BatchNorm2D(channels)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = conv3x3(channels, channels, stride)
|
|
self.bn2 = nn.BatchNorm2D(channels)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet45(nn.Layer):
|
|
def __init__(self,
|
|
in_channels=3,
|
|
block=BasicBlock,
|
|
layers=[3, 4, 6, 6, 3],
|
|
strides=[2, 1, 2, 1, 1]):
|
|
self.inplanes = 32
|
|
super(ResNet45, self).__init__()
|
|
self.conv1 = nn.Conv2D(
|
|
in_channels,
|
|
32,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
|
bias_attr=False)
|
|
self.bn1 = nn.BatchNorm2D(32)
|
|
self.relu = nn.ReLU()
|
|
|
|
self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0])
|
|
self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1])
|
|
self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2])
|
|
self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3])
|
|
self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4])
|
|
self.out_channels = 512
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
# downsample = True
|
|
downsample = nn.Sequential(
|
|
nn.Conv2D(
|
|
self.inplanes,
|
|
planes * block.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
weight_attr=ParamAttr(initializer=KaimingNormal()),
|
|
bias_attr=False),
|
|
nn.BatchNorm2D(planes * block.expansion), )
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
x = self.layer5(x)
|
|
return x
|