PaddleOCR/test_tipc/supplementary/custom_op/test.py

78 lines
2.3 KiB
Python

import paddle
import paddle.nn as nn
from paddle.vision.transforms import Compose, Normalize
from paddle.utils.cpp_extension import load
from paddle.inference import Config
from paddle.inference import create_predictor
import numpy as np
EPOCH_NUM = 4
BATCH_SIZE = 64
# jit compile custom op
custom_ops = load(
name="custom_jit_ops", sources=["custom_relu_op.cc", "custom_relu_op.cu"]
)
class LeNet(nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2D(
in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2
)
self.max_pool1 = nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.max_pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
self.linear1 = nn.Linear(in_features=16 * 5 * 5, out_features=120)
self.linear2 = nn.Linear(in_features=120, out_features=84)
self.linear3 = nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = custom_ops.custom_relu(x)
x = self.max_pool1(x)
x = custom_ops.custom_relu(x)
x = self.conv2(x)
x = self.max_pool2(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.linear1(x)
x = custom_ops.custom_relu(x)
x = self.linear2(x)
x = custom_ops.custom_relu(x)
x = self.linear3(x)
return x
# set device
paddle.set_device("gpu")
# model
net = LeNet()
loss_fn = nn.CrossEntropyLoss()
opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=net.parameters())
# data loader
transform = Compose([Normalize(mean=[127.5], std=[127.5], data_format="CHW")])
train_dataset = paddle.vision.datasets.MNIST(mode="train", transform=transform)
train_loader = paddle.io.DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2
)
# train
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(train_loader()):
out = net(image)
loss = loss_fn(out, label)
loss.backward()
if batch_id % 300 == 0:
print(
"Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())
)
)
opt.step()
opt.clear_grad()