PaddleOCR/deploy/fastdeploy/cpu-gpu/cpp/infer.cc

175 lines
6.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string &det_model_dir,
const std::string &cls_model_dir,
const std::string &rec_model_dir,
const std::string &rec_label_file,
const std::string &image_file,
const fastdeploy::RuntimeOption &option) {
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
// The cls and rec model can inference a batch of images now.
// User could initialize the inference batch size and set them after create
// PP-OCR model.
int cls_batch_size = 1;
int rec_batch_size = 6;
// If use TRT backend, the dynamic shape will be set as follow.
// We recommend that users set the length and height of the detection model to
// a multiple of 32.
// We also recommend that users set the Trt input shape as follow.
det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
{1, 3, 960, 960});
cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320},
{cls_batch_size, 3, 48, 1024});
rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
{rec_batch_size, 3, 48, 2304});
// Users could save TRT cache file to disk as follow.
// det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
// cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
// rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");
auto det_model = fastdeploy::vision::ocr::DBDetector(
det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(
cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(
rec_model_file, rec_params_file, rec_label_file, rec_option);
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
// Parameters settings for pre and post processing of Det/Cls/Rec Models.
// All parameters are set to default values.
det_model.GetPreprocessor().SetMaxSideLen(960);
det_model.GetPostprocessor().SetDetDBThresh(0.3);
det_model.GetPostprocessor().SetDetDBBoxThresh(0.6);
det_model.GetPostprocessor().SetDetDBUnclipRatio(1.5);
det_model.GetPostprocessor().SetDetDBScoreMode("slow");
det_model.GetPostprocessor().SetUseDilation(0);
cls_model.GetPostprocessor().SetClsThresh(0.9);
// The classification model is optional, so the PP-OCR can also be connected
// in series as follows
// auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
auto ppocr_v3 =
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
// Set inference batch size for cls model and rec model, the value could be -1
// and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch
// size
// of the cls and rec models will be the same as the number of boxes detected
// by the det model.
ppocr_v3.SetClsBatchSize(cls_batch_size);
ppocr_v3.SetRecBatchSize(rec_batch_size);
if (!ppocr_v3.Initialized()) {
std::cerr << "Failed to initialize PP-OCR." << std::endl;
return;
}
auto im = cv::imread(image_file);
auto im_bak = im.clone();
fastdeploy::vision::OCRResult result;
if (!ppocr_v3.Predict(&im, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << result.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char *argv[]) {
if (argc < 7) {
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
"path/to/rec_model path/to/rec_label_file path/to/image "
"run_option, "
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
"./ppocr_keys_v1.txt ./12.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, e.g. 0: run with paddle "
"inference on cpu;"
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
int flag = std::atoi(argv[6]);
if (flag == 0) {
option.UseCpu();
option.UsePaddleBackend(); // Paddle Inference
} else if (flag == 1) {
option.UseCpu();
option.UseOpenVINOBackend(); // OpenVINO
} else if (flag == 2) {
option.UseCpu();
option.UseOrtBackend(); // ONNX Runtime
} else if (flag == 3) {
option.UseCpu();
option.UseLiteBackend(); // Paddle Lite
} else if (flag == 4) {
option.UseGpu();
option.UsePaddleBackend(); // Paddle Inference
} else if (flag == 5) {
option.UseGpu();
option.UsePaddleInferBackend();
option.paddle_infer_option.collect_trt_shape = true;
option.paddle_infer_option.enable_trt = true; // Paddle-TensorRT
} else if (flag == 6) {
option.UseGpu();
option.UseOrtBackend(); // ONNX Runtime
} else if (flag == 7) {
option.UseGpu();
option.UseTrtBackend(); // TensorRT
}
std::string det_model_dir = argv[1];
std::string cls_model_dir = argv[2];
std::string rec_model_dir = argv[3];
std::string rec_label_file = argv[4];
std::string test_image = argv[5];
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file,
test_image, option);
return 0;
}