1193 lines
40 KiB
Python
1193 lines
40 KiB
Python
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
import numpy as np
|
|
import cv2
|
|
|
|
from .rec_ctc_loss import CTCLoss
|
|
from .rec_sar_loss import SARLoss
|
|
from .rec_ce_loss import CELoss
|
|
from .basic_loss import DMLLoss, KLDivLoss, DKDLoss
|
|
from .basic_loss import DistanceLoss
|
|
from .basic_loss import LossFromOutput
|
|
from .det_db_loss import DBLoss
|
|
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
|
|
from .vqa_token_layoutlm_loss import VQASerTokenLayoutLMLoss
|
|
|
|
|
|
def _sum_loss(loss_dict):
|
|
if "loss" in loss_dict.keys():
|
|
return loss_dict
|
|
else:
|
|
loss_dict["loss"] = 0.0
|
|
for k, value in loss_dict.items():
|
|
if k == "loss":
|
|
continue
|
|
else:
|
|
loss_dict["loss"] += value
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDMLLoss(DMLLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_pairs=[],
|
|
act=None,
|
|
use_log=False,
|
|
key=None,
|
|
multi_head=False,
|
|
dis_head="ctc",
|
|
maps_name=None,
|
|
name="dml",
|
|
):
|
|
super().__init__(act=act, use_log=use_log)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.multi_head = multi_head
|
|
self.dis_head = dis_head
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.name = name
|
|
self.maps_name = self._check_maps_name(maps_name)
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str
|
|
):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def _check_maps_name(self, maps_name):
|
|
if maps_name is None:
|
|
return None
|
|
elif isinstance(maps_name, str):
|
|
return [maps_name]
|
|
elif isinstance(maps_name, list):
|
|
return [maps_name]
|
|
else:
|
|
return None
|
|
|
|
def _slice_out(self, outs):
|
|
new_outs = {}
|
|
for k in self.maps_name:
|
|
if k == "thrink_maps":
|
|
new_outs[k] = outs[:, 0, :, :]
|
|
elif k == "threshold_maps":
|
|
new_outs[k] = outs[:, 1, :, :]
|
|
elif k == "binary_maps":
|
|
new_outs[k] = outs[:, 2, :, :]
|
|
else:
|
|
continue
|
|
return new_outs
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
if self.maps_name is None:
|
|
if self.multi_head:
|
|
loss = super().forward(out1[self.dis_head], out2[self.dis_head])
|
|
else:
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = (
|
|
loss[key]
|
|
)
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
else:
|
|
outs1 = self._slice_out(out1)
|
|
outs2 = self._slice_out(out2)
|
|
for _c, k in enumerate(outs1.keys()):
|
|
loss = super().forward(outs1[k], outs2[k])
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict[
|
|
"{}_{}_{}_{}_{}".format(
|
|
key, pair[0], pair[1], self.maps_name, idx
|
|
)
|
|
] = loss[key]
|
|
else:
|
|
loss_dict[
|
|
"{}_{}_{}".format(self.name, self.maps_name[_c], idx)
|
|
] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationKLDivLoss(KLDivLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_pairs=[],
|
|
key=None,
|
|
multi_head=False,
|
|
dis_head="ctc",
|
|
maps_name=None,
|
|
name="kl_div",
|
|
):
|
|
super().__init__()
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.multi_head = multi_head
|
|
self.dis_head = dis_head
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.name = name
|
|
self.maps_name = self._check_maps_name(maps_name)
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str
|
|
):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def _check_maps_name(self, maps_name):
|
|
if maps_name is None:
|
|
return None
|
|
elif isinstance(maps_name, str):
|
|
return [maps_name]
|
|
elif isinstance(maps_name, list):
|
|
return [maps_name]
|
|
else:
|
|
return None
|
|
|
|
def _slice_out(self, outs):
|
|
new_outs = {}
|
|
for k in self.maps_name:
|
|
if k == "thrink_maps":
|
|
new_outs[k] = outs[:, 0, :, :]
|
|
elif k == "threshold_maps":
|
|
new_outs[k] = outs[:, 1, :, :]
|
|
elif k == "binary_maps":
|
|
new_outs[k] = outs[:, 2, :, :]
|
|
else:
|
|
continue
|
|
return new_outs
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
if self.maps_name is None:
|
|
if self.multi_head:
|
|
# for nrtr dml loss
|
|
max_len = batch[3].max()
|
|
tgt = batch[2][:, 1 : 2 + max_len]
|
|
tgt = tgt.reshape([-1])
|
|
non_pad_mask = paddle.not_equal(
|
|
tgt, paddle.zeros(tgt.shape, dtype=tgt.dtype)
|
|
)
|
|
loss = super().forward(
|
|
out1[self.dis_head], out2[self.dis_head], non_pad_mask
|
|
)
|
|
else:
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = (
|
|
loss[key]
|
|
)
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
else:
|
|
outs1 = self._slice_out(out1)
|
|
outs2 = self._slice_out(out2)
|
|
for _c, k in enumerate(outs1.keys()):
|
|
loss = super().forward(outs1[k], outs2[k])
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict[
|
|
"{}_{}_{}_{}_{}".format(
|
|
key, pair[0], pair[1], self.maps_name, idx
|
|
)
|
|
] = loss[key]
|
|
else:
|
|
loss_dict[
|
|
"{}_{}_{}".format(self.name, self.maps_name[_c], idx)
|
|
] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDKDLoss(DKDLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_pairs=[],
|
|
key=None,
|
|
multi_head=False,
|
|
dis_head="ctc",
|
|
maps_name=None,
|
|
name="dkd",
|
|
temperature=1.0,
|
|
alpha=1.0,
|
|
beta=1.0,
|
|
):
|
|
super().__init__(temperature, alpha, beta)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.multi_head = multi_head
|
|
self.dis_head = dis_head
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.name = name
|
|
self.maps_name = self._check_maps_name(maps_name)
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str
|
|
):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def _check_maps_name(self, maps_name):
|
|
if maps_name is None:
|
|
return None
|
|
elif isinstance(maps_name, str):
|
|
return [maps_name]
|
|
elif isinstance(maps_name, list):
|
|
return [maps_name]
|
|
else:
|
|
return None
|
|
|
|
def _slice_out(self, outs):
|
|
new_outs = {}
|
|
for k in self.maps_name:
|
|
if k == "thrink_maps":
|
|
new_outs[k] = outs[:, 0, :, :]
|
|
elif k == "threshold_maps":
|
|
new_outs[k] = outs[:, 1, :, :]
|
|
elif k == "binary_maps":
|
|
new_outs[k] = outs[:, 2, :, :]
|
|
else:
|
|
continue
|
|
return new_outs
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
if self.maps_name is None:
|
|
if self.multi_head:
|
|
# for nrtr dml loss
|
|
max_len = batch[3].max()
|
|
tgt = batch[2][:, 1 : 2 + max_len] # [batch_size, max_len + 1]
|
|
|
|
tgt = tgt.reshape([-1]) # batch_size * (max_len + 1)
|
|
non_pad_mask = paddle.not_equal(
|
|
tgt, paddle.zeros(tgt.shape, dtype=tgt.dtype)
|
|
) # batch_size * (max_len + 1)
|
|
|
|
loss = super().forward(
|
|
out1[self.dis_head], out2[self.dis_head], tgt, non_pad_mask
|
|
) # [batch_size, max_len + 1, num_char]
|
|
else:
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = (
|
|
loss[key]
|
|
)
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
else:
|
|
outs1 = self._slice_out(out1)
|
|
outs2 = self._slice_out(out2)
|
|
for _c, k in enumerate(outs1.keys()):
|
|
loss = super().forward(outs1[k], outs2[k])
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict[
|
|
"{}_{}_{}_{}_{}".format(
|
|
key, pair[0], pair[1], self.maps_name, idx
|
|
)
|
|
] = loss[key]
|
|
else:
|
|
loss_dict[
|
|
"{}_{}_{}".format(self.name, self.maps_name[_c], idx)
|
|
] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationNRTRDMLLoss(DistillationDMLLoss):
|
|
""" """
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
|
|
if self.multi_head:
|
|
# for nrtr dml loss
|
|
max_len = batch[3].max()
|
|
tgt = batch[2][:, 1 : 2 + max_len]
|
|
tgt = tgt.reshape([-1])
|
|
non_pad_mask = paddle.not_equal(
|
|
tgt, paddle.zeros(tgt.shape, dtype=tgt.dtype)
|
|
)
|
|
loss = super().forward(
|
|
out1[self.dis_head], out2[self.dis_head], non_pad_mask
|
|
)
|
|
else:
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = loss[
|
|
key
|
|
]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationKLDivLoss(KLDivLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_pairs=[],
|
|
key=None,
|
|
multi_head=False,
|
|
dis_head="ctc",
|
|
maps_name=None,
|
|
name="kl_div",
|
|
):
|
|
super().__init__()
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.multi_head = multi_head
|
|
self.dis_head = dis_head
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.name = name
|
|
self.maps_name = self._check_maps_name(maps_name)
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str
|
|
):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def _check_maps_name(self, maps_name):
|
|
if maps_name is None:
|
|
return None
|
|
elif isinstance(maps_name, str):
|
|
return [maps_name]
|
|
elif isinstance(maps_name, list):
|
|
return [maps_name]
|
|
else:
|
|
return None
|
|
|
|
def _slice_out(self, outs):
|
|
new_outs = {}
|
|
for k in self.maps_name:
|
|
if k == "thrink_maps":
|
|
new_outs[k] = outs[:, 0, :, :]
|
|
elif k == "threshold_maps":
|
|
new_outs[k] = outs[:, 1, :, :]
|
|
elif k == "binary_maps":
|
|
new_outs[k] = outs[:, 2, :, :]
|
|
else:
|
|
continue
|
|
return new_outs
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
if self.maps_name is None:
|
|
if self.multi_head:
|
|
# for nrtr dml loss
|
|
max_len = batch[3].max()
|
|
tgt = batch[2][:, 1 : 2 + max_len]
|
|
tgt = tgt.reshape([-1])
|
|
non_pad_mask = paddle.not_equal(
|
|
tgt, paddle.zeros(tgt.shape, dtype=tgt.dtype)
|
|
)
|
|
loss = super().forward(
|
|
out1[self.dis_head], out2[self.dis_head], non_pad_mask
|
|
)
|
|
else:
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = (
|
|
loss[key]
|
|
)
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
else:
|
|
outs1 = self._slice_out(out1)
|
|
outs2 = self._slice_out(out2)
|
|
for _c, k in enumerate(outs1.keys()):
|
|
loss = super().forward(outs1[k], outs2[k])
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict[
|
|
"{}_{}_{}_{}_{}".format(
|
|
key, pair[0], pair[1], self.maps_name, idx
|
|
)
|
|
] = loss[key]
|
|
else:
|
|
loss_dict[
|
|
"{}_{}_{}".format(self.name, self.maps_name[_c], idx)
|
|
] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDKDLoss(DKDLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_pairs=[],
|
|
key=None,
|
|
multi_head=False,
|
|
dis_head="ctc",
|
|
maps_name=None,
|
|
name="dkd",
|
|
temperature=1.0,
|
|
alpha=1.0,
|
|
beta=1.0,
|
|
):
|
|
super().__init__(temperature, alpha, beta)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.multi_head = multi_head
|
|
self.dis_head = dis_head
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.name = name
|
|
self.maps_name = self._check_maps_name(maps_name)
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str
|
|
):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def _check_maps_name(self, maps_name):
|
|
if maps_name is None:
|
|
return None
|
|
elif isinstance(maps_name, str):
|
|
return [maps_name]
|
|
elif isinstance(maps_name, list):
|
|
return [maps_name]
|
|
else:
|
|
return None
|
|
|
|
def _slice_out(self, outs):
|
|
new_outs = {}
|
|
for k in self.maps_name:
|
|
if k == "thrink_maps":
|
|
new_outs[k] = outs[:, 0, :, :]
|
|
elif k == "threshold_maps":
|
|
new_outs[k] = outs[:, 1, :, :]
|
|
elif k == "binary_maps":
|
|
new_outs[k] = outs[:, 2, :, :]
|
|
else:
|
|
continue
|
|
return new_outs
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
if self.maps_name is None:
|
|
if self.multi_head:
|
|
# for nrtr dml loss
|
|
max_len = batch[3].max()
|
|
tgt = batch[2][:, 1 : 2 + max_len] # [batch_size, max_len + 1]
|
|
|
|
tgt = tgt.reshape([-1]) # batch_size * (max_len + 1)
|
|
non_pad_mask = paddle.not_equal(
|
|
tgt, paddle.zeros(tgt.shape, dtype=tgt.dtype)
|
|
) # batch_size * (max_len + 1)
|
|
|
|
loss = super().forward(
|
|
out1[self.dis_head], out2[self.dis_head], tgt, non_pad_mask
|
|
) # [batch_size, max_len + 1, num_char]
|
|
else:
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = (
|
|
loss[key]
|
|
)
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
else:
|
|
outs1 = self._slice_out(out1)
|
|
outs2 = self._slice_out(out2)
|
|
for _c, k in enumerate(outs1.keys()):
|
|
loss = super().forward(outs1[k], outs2[k])
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict[
|
|
"{}_{}_{}_{}_{}".format(
|
|
key, pair[0], pair[1], self.maps_name, idx
|
|
)
|
|
] = loss[key]
|
|
else:
|
|
loss_dict[
|
|
"{}_{}_{}".format(self.name, self.maps_name[_c], idx)
|
|
] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationCTCLoss(CTCLoss):
|
|
def __init__(self, model_name_list=[], key=None, multi_head=False, name="loss_ctc"):
|
|
super().__init__()
|
|
self.model_name_list = model_name_list
|
|
self.key = key
|
|
self.name = name
|
|
self.multi_head = multi_head
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.key is not None:
|
|
out = out[self.key]
|
|
if self.multi_head:
|
|
assert "ctc" in out, "multi head has multi out"
|
|
loss = super().forward(out["ctc"], batch[:2] + batch[3:])
|
|
else:
|
|
loss = super().forward(out, batch)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}".format(self.name, model_name, idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class DistillationSARLoss(SARLoss):
|
|
def __init__(
|
|
self, model_name_list=[], key=None, multi_head=False, name="loss_sar", **kwargs
|
|
):
|
|
ignore_index = kwargs.get("ignore_index", 92)
|
|
super().__init__(ignore_index=ignore_index)
|
|
self.model_name_list = model_name_list
|
|
self.key = key
|
|
self.name = name
|
|
self.multi_head = multi_head
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.key is not None:
|
|
out = out[self.key]
|
|
if self.multi_head:
|
|
assert "sar" in out, "multi head has multi out"
|
|
loss = super().forward(out["sar"], batch[:1] + batch[2:])
|
|
else:
|
|
loss = super().forward(out, batch)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}".format(self.name, model_name, idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class DistillationNRTRLoss(CELoss):
|
|
def __init__(
|
|
self,
|
|
model_name_list=[],
|
|
key=None,
|
|
multi_head=False,
|
|
smoothing=True,
|
|
name="loss_nrtr",
|
|
**kwargs,
|
|
):
|
|
super().__init__(smoothing=smoothing)
|
|
self.model_name_list = model_name_list
|
|
self.key = key
|
|
self.name = name
|
|
self.multi_head = multi_head
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.key is not None:
|
|
out = out[self.key]
|
|
if self.multi_head:
|
|
assert "gtc" in out, "multi head has multi out"
|
|
loss = super().forward(out["gtc"], batch[:1] + batch[2:])
|
|
else:
|
|
loss = super().forward(out, batch)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}".format(self.name, model_name, idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDBLoss(DBLoss):
|
|
def __init__(
|
|
self,
|
|
model_name_list=[],
|
|
balance_loss=True,
|
|
main_loss_type="DiceLoss",
|
|
alpha=5,
|
|
beta=10,
|
|
ohem_ratio=3,
|
|
eps=1e-6,
|
|
name="db",
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.model_name_list = model_name_list
|
|
self.name = name
|
|
self.key = None
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = {}
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.key is not None:
|
|
out = out[self.key]
|
|
loss = super().forward(out, batch)
|
|
|
|
if isinstance(loss, dict):
|
|
for key in loss.keys():
|
|
if key == "loss":
|
|
continue
|
|
name = "{}_{}_{}".format(self.name, model_name, key)
|
|
loss_dict[name] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDilaDBLoss(DBLoss):
|
|
def __init__(
|
|
self,
|
|
model_name_pairs=[],
|
|
key=None,
|
|
balance_loss=True,
|
|
main_loss_type="DiceLoss",
|
|
alpha=5,
|
|
beta=10,
|
|
ohem_ratio=3,
|
|
eps=1e-6,
|
|
name="dila_dbloss",
|
|
):
|
|
super().__init__()
|
|
self.model_name_pairs = model_name_pairs
|
|
self.name = name
|
|
self.key = key
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
stu_outs = predicts[pair[0]]
|
|
tch_outs = predicts[pair[1]]
|
|
if self.key is not None:
|
|
stu_preds = stu_outs[self.key]
|
|
tch_preds = tch_outs[self.key]
|
|
|
|
stu_shrink_maps = stu_preds[:, 0, :, :]
|
|
stu_binary_maps = stu_preds[:, 2, :, :]
|
|
|
|
# dilation to teacher prediction
|
|
dilation_w = np.array([[1, 1], [1, 1]])
|
|
th_shrink_maps = tch_preds[:, 0, :, :]
|
|
if hasattr(paddle.Tensor, "contiguous"):
|
|
th_shrink_maps = th_shrink_maps.contiguous()
|
|
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
|
|
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
|
|
for i in range(th_shrink_maps.shape[0]):
|
|
dilate_maps[i] = cv2.dilate(
|
|
th_shrink_maps[i, :, :].astype(np.uint8), dilation_w
|
|
)
|
|
th_shrink_maps = paddle.to_tensor(dilate_maps)
|
|
|
|
(
|
|
label_threshold_map,
|
|
label_threshold_mask,
|
|
label_shrink_map,
|
|
label_shrink_mask,
|
|
) = batch[1:]
|
|
|
|
# calculate the shrink map loss
|
|
bce_loss = self.alpha * self.bce_loss(
|
|
stu_shrink_maps, th_shrink_maps, label_shrink_mask
|
|
)
|
|
loss_binary_maps = self.dice_loss(
|
|
stu_binary_maps, th_shrink_maps, label_shrink_mask
|
|
)
|
|
|
|
# k = f"{self.name}_{pair[0]}_{pair[1]}"
|
|
k = "{}_{}_{}".format(self.name, pair[0], pair[1])
|
|
loss_dict[k] = bce_loss + loss_binary_maps
|
|
|
|
loss_dict = _sum_loss(loss_dict)
|
|
return loss_dict
|
|
|
|
|
|
class DistillationDistanceLoss(DistanceLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self, mode="l2", model_name_pairs=[], key=None, name="loss_distance", **kargs
|
|
):
|
|
super().__init__(mode=mode, **kargs)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.model_name_pairs = model_name_pairs
|
|
self.name = name + "_l2"
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1], idx)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class DistillationVQASerTokenLayoutLMLoss(VQASerTokenLayoutLMLoss):
|
|
def __init__(self, num_classes, model_name_list=[], key=None, name="loss_ser"):
|
|
super().__init__(num_classes=num_classes)
|
|
self.model_name_list = model_name_list
|
|
self.key = key
|
|
self.name = name
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.key is not None:
|
|
out = out[self.key]
|
|
loss = super().forward(out, batch)
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss["loss"]
|
|
return loss_dict
|
|
|
|
|
|
class DistillationLossFromOutput(LossFromOutput):
|
|
def __init__(
|
|
self,
|
|
reduction="none",
|
|
model_name_list=[],
|
|
dist_key=None,
|
|
key="loss",
|
|
name="loss_re",
|
|
):
|
|
super().__init__(key=key, reduction=reduction)
|
|
self.model_name_list = model_name_list
|
|
self.name = name
|
|
self.dist_key = dist_key
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, model_name in enumerate(self.model_name_list):
|
|
out = predicts[model_name]
|
|
if self.dist_key is not None:
|
|
out = out[self.dist_key]
|
|
loss = super().forward(out, batch)
|
|
loss_dict["{}_{}".format(self.name, model_name)] = loss["loss"]
|
|
return loss_dict
|
|
|
|
|
|
class DistillationSERDMLLoss(DMLLoss):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
act="softmax",
|
|
use_log=True,
|
|
num_classes=7,
|
|
model_name_pairs=[],
|
|
key=None,
|
|
name="loss_dml_ser",
|
|
):
|
|
super().__init__(act=act, use_log=use_log)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.name = name
|
|
self.num_classes = num_classes
|
|
self.model_name_pairs = model_name_pairs
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
out1 = out1.reshape([-1, out1.shape[-1]])
|
|
out2 = out2.reshape([-1, out2.shape[-1]])
|
|
|
|
attention_mask = batch[2]
|
|
if attention_mask is not None:
|
|
active_output = (
|
|
attention_mask.reshape(
|
|
[
|
|
-1,
|
|
]
|
|
)
|
|
== 1
|
|
)
|
|
out1 = out1[active_output]
|
|
out2 = out2[active_output]
|
|
|
|
loss_dict["{}_{}".format(self.name, idx)] = super().forward(out1, out2)
|
|
|
|
return loss_dict
|
|
|
|
|
|
class DistillationVQADistanceLoss(DistanceLoss):
|
|
def __init__(
|
|
self,
|
|
mode="l2",
|
|
model_name_pairs=[],
|
|
key=None,
|
|
index=None,
|
|
name="loss_distance",
|
|
**kargs,
|
|
):
|
|
super().__init__(mode=mode, **kargs)
|
|
assert isinstance(model_name_pairs, list)
|
|
self.key = key
|
|
self.index = index
|
|
self.model_name_pairs = model_name_pairs
|
|
self.name = name + "_l2"
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
attention_mask = batch[2]
|
|
if self.key is not None:
|
|
out1 = out1[self.key]
|
|
out2 = out2[self.key]
|
|
if self.index is not None:
|
|
out1 = out1[:, self.index, :, :]
|
|
out2 = out2[:, self.index, :, :]
|
|
if attention_mask is not None:
|
|
max_len = attention_mask.shape[-1]
|
|
out1 = out1[:, :max_len]
|
|
out2 = out2[:, :max_len]
|
|
out1 = out1.reshape([-1, out1.shape[-1]])
|
|
out2 = out2.reshape([-1, out2.shape[-1]])
|
|
if attention_mask is not None:
|
|
active_output = (
|
|
attention_mask.reshape(
|
|
[
|
|
-1,
|
|
]
|
|
)
|
|
== 1
|
|
)
|
|
out1 = out1[active_output]
|
|
out2 = out2[active_output]
|
|
|
|
loss = super().forward(out1, out2)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict["{}_{}nohu_{}".format(self.name, key, idx)] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1], idx)] = loss
|
|
return loss_dict
|
|
|
|
|
|
class CTCDKDLoss(nn.Layer):
|
|
"""
|
|
KLDivLoss
|
|
"""
|
|
|
|
def __init__(self, temperature=0.5, alpha=1.0, beta=1.0):
|
|
super().__init__()
|
|
self.temperature = temperature
|
|
self.alpha = alpha
|
|
self.beta = beta
|
|
self.eps = 1e-6
|
|
self.t = temperature
|
|
self.act = nn.Softmax(axis=-1)
|
|
self.use_log = True
|
|
|
|
def kl_loss(self, p1, p2): # predict, label
|
|
loss = paddle.multiply(
|
|
p2, paddle.log((p2 + self.eps) / (p1 + self.eps) + self.eps)
|
|
)
|
|
bs = loss.shape[0]
|
|
loss = paddle.sum(loss) / bs
|
|
return loss
|
|
|
|
def _cat_mask(self, t, mask1, mask2):
|
|
t1 = (t * mask1).sum(axis=1, keepdim=True)
|
|
t2 = (t * mask2).sum(axis=1, keepdim=True)
|
|
rt = paddle.concat([t1, t2], axis=1)
|
|
return rt
|
|
|
|
def multi_label_mask(self, targets):
|
|
targets = targets.astype("int32")
|
|
res = F.one_hot(targets, num_classes=11465)
|
|
mask = paddle.clip(paddle.sum(res, axis=1), 0, 1)
|
|
mask[:, 0] = 0 # ingore ctc blank label
|
|
return mask
|
|
|
|
def forward(self, logits_student, logits_teacher, targets, mask=None):
|
|
gt_mask = self.multi_label_mask(targets)
|
|
other_mask = paddle.ones_like(gt_mask) - gt_mask
|
|
|
|
pred_student = F.softmax(logits_student / self.temperature, axis=-1)
|
|
pred_teacher = F.softmax(logits_teacher / self.temperature, axis=-1)
|
|
|
|
# differents with dkd
|
|
pred_student = paddle.mean(pred_student, axis=1)
|
|
pred_teacher = paddle.mean(pred_teacher, axis=1)
|
|
|
|
pred_student = self._cat_mask(pred_student, gt_mask, other_mask)
|
|
pred_teacher = self._cat_mask(pred_teacher, gt_mask, other_mask)
|
|
|
|
# differents with dkd
|
|
tckd_loss = self.kl_loss(pred_student, pred_teacher)
|
|
|
|
gt_mask_ex = paddle.expand_as(gt_mask.unsqueeze(axis=1), logits_teacher)
|
|
pred_teacher_part2 = F.softmax(
|
|
logits_teacher / self.temperature - 1000.0 * gt_mask_ex, axis=-1
|
|
)
|
|
pred_student_part2 = F.softmax(
|
|
logits_student / self.temperature - 1000.0 * gt_mask_ex, axis=-1
|
|
)
|
|
# differents with dkd
|
|
pred_teacher_part2 = paddle.mean(pred_teacher_part2, axis=1)
|
|
pred_student_part2 = paddle.mean(pred_student_part2, axis=1)
|
|
|
|
# differents with dkd
|
|
nckd_loss = self.kl_loss(pred_student_part2, pred_teacher_part2)
|
|
loss = self.alpha * tckd_loss + self.beta * nckd_loss
|
|
return loss
|
|
|
|
|
|
class KLCTCLogits(nn.Layer):
|
|
def __init__(self, weight=1.0, reduction="mean", mode="mean"):
|
|
super().__init__()
|
|
self.weight = weight
|
|
self.reduction = reduction
|
|
self.eps = 1e-6
|
|
self.t = 0.5
|
|
self.act = nn.Softmax(axis=-1)
|
|
self.use_log = True
|
|
self.mode = mode
|
|
self.ctc_dkd_loss = CTCDKDLoss()
|
|
|
|
def kl_loss(self, p1, p2): # predict, label
|
|
loss = paddle.multiply(
|
|
p2, paddle.log((p2 + self.eps) / (p1 + self.eps) + self.eps)
|
|
)
|
|
bs = loss.shape[0]
|
|
loss = paddle.sum(loss) / bs
|
|
return loss
|
|
|
|
def forward_meanmax(self, stu_out, tea_out):
|
|
stu_out = paddle.mean(F.softmax(stu_out / self.t, axis=-1), axis=1)
|
|
tea_out = paddle.mean(F.softmax(tea_out / self.t, axis=-1), axis=1)
|
|
loss = self.kl_loss(stu_out, tea_out)
|
|
|
|
return loss
|
|
|
|
def forward_meanlog(self, stu_out, tea_out):
|
|
stu_out = paddle.mean(F.softmax(stu_out / self.t, axis=-1), axis=1)
|
|
tea_out = paddle.mean(F.softmax(tea_out / self.t, axis=-1), axis=1)
|
|
if self.use_log is True:
|
|
# for recognition distillation, log is needed for feature map
|
|
log_out1 = paddle.log(stu_out)
|
|
log_out2 = paddle.log(tea_out)
|
|
loss = (
|
|
self._kldiv(log_out1, tea_out) + self._kldiv(log_out2, stu_out)
|
|
) / 2.0
|
|
|
|
return loss
|
|
|
|
def forward_sum(self, stu_out, tea_out):
|
|
stu_out = paddle.sum(F.softmax(stu_out / self.t, axis=-1), axis=1)
|
|
tea_out = paddle.sum(F.softmax(tea_out / self.t, axis=-1), axis=1)
|
|
stu_out = paddle.log(stu_out)
|
|
bs = stu_out.shape[0]
|
|
loss = tea_out * (paddle.log(tea_out + self.eps) - stu_out)
|
|
loss = paddle.sum(loss, axis=1) / loss.shape[0]
|
|
return loss
|
|
|
|
def _kldiv(self, x, target):
|
|
eps = 1.0e-10
|
|
loss = target * (paddle.log(target + eps) - x)
|
|
loss = paddle.sum(paddle.mean(loss, axis=1)) / loss.shape[0]
|
|
return loss
|
|
|
|
def forward(self, stu_out, tea_out, targets=None):
|
|
if self.mode == "log":
|
|
return self.forward_log(stu_out, tea_out)
|
|
elif self.mode == "mean":
|
|
blank_mask = paddle.ones_like(stu_out)
|
|
blank_mask.stop_gradient = True
|
|
blank_mask[:, :, 0] = -1
|
|
stu_out *= blank_mask
|
|
tea_out *= blank_mask
|
|
return self.forward_meanmax(stu_out, tea_out)
|
|
elif self.mode == "sum":
|
|
return self.forward_sum(stu_out, tea_out)
|
|
elif self.mode == "meanlog":
|
|
blank_mask = paddle.ones_like(stu_out)
|
|
blank_mask.stop_gradient = True
|
|
blank_mask[:, :, 0] = -1
|
|
stu_out *= blank_mask
|
|
tea_out *= blank_mask
|
|
return self.forward_meanlog(stu_out, tea_out)
|
|
elif self.mode == "ctcdkd":
|
|
# ingore ctc blank logits
|
|
blank_mask = paddle.ones_like(stu_out)
|
|
blank_mask.stop_gradient = True
|
|
blank_mask[:, :, 0] = -1
|
|
stu_out *= blank_mask
|
|
tea_out *= blank_mask
|
|
return self.ctc_dkd_loss(stu_out, tea_out, targets)
|
|
else:
|
|
raise ValueError("error!!!!!!")
|
|
|
|
def forward_log(self, out1, out2):
|
|
if self.act is not None:
|
|
out1 = self.act(out1) + 1e-10
|
|
out2 = self.act(out2) + 1e-10
|
|
if self.use_log is True:
|
|
# for recognition distillation, log is needed for feature map
|
|
log_out1 = paddle.log(out1)
|
|
log_out2 = paddle.log(out2)
|
|
loss = (self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
|
|
|
|
return loss
|
|
|
|
|
|
class DistillCTCLogits(KLCTCLogits):
|
|
def __init__(
|
|
self, model_name_pairs=[], key=None, name="ctc_logits", reduction="mean"
|
|
):
|
|
super().__init__(reduction=reduction)
|
|
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
|
|
self.key = key
|
|
self.name = name
|
|
|
|
def _check_model_name_pairs(self, model_name_pairs):
|
|
if not isinstance(model_name_pairs, list):
|
|
return []
|
|
elif isinstance(model_name_pairs[0], list) and isinstance(
|
|
model_name_pairs[0][0], str
|
|
):
|
|
return model_name_pairs
|
|
else:
|
|
return [model_name_pairs]
|
|
|
|
def forward(self, predicts, batch):
|
|
loss_dict = dict()
|
|
for idx, pair in enumerate(self.model_name_pairs):
|
|
out1 = predicts[pair[0]]
|
|
out2 = predicts[pair[1]]
|
|
|
|
if self.key is not None:
|
|
out1 = out1[self.key]["ctc"]
|
|
out2 = out2[self.key]["ctc"]
|
|
|
|
ctc_label = batch[1]
|
|
loss = super().forward(out1, out2, ctc_label)
|
|
if isinstance(loss, dict):
|
|
for key in loss:
|
|
loss_dict[
|
|
"{}_{}_{}".format(self.name, self.model_name_pairs, idx)
|
|
] = loss[key]
|
|
else:
|
|
loss_dict["{}_{}".format(self.name, idx)] = loss
|
|
return loss_dict
|