PaddleOCR/doc/doc_ch/quickstart.md

195 lines
6.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# PaddleOCR 快速开始
**说明:** 本文主要介绍PaddleOCR wheel包对PP-OCR系列模型的快速使用如要体验文档分析相关功能请参考[PP-Structure快速使用教程](../../ppstructure/docs/quickstart.md)。
- [1. 安装](#1)
- [1.1 安装PaddlePaddle](#11)
- [1.2 安装PaddleOCR whl包](#12)
- [2. 便捷使用](#2)
- [2.1 命令行使用](#21)
- [2.1.1 中英文模型](#211)
- [2.1.2 多语言模型](#212)
- [2.2 Python脚本使用](#22)
- [2.2.1 中英文与多语言使用](#221)
- [3.小结](#3)
<a name="1"></a>
## 1. 安装
<a name="11"></a>
### 1.1 安装PaddlePaddle
> 如果您没有基础的Python运行环境请参考[运行环境准备](./environment.md)。
- 您的机器安装的是CUDA9或CUDA10请运行以下命令安装
```bash
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
```
- 您的机器是CPU请运行以下命令安装
```bash
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
<a name="12"></a>
### 1.2 安装PaddleOCR whl包
```bash
pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本
```
- 对于Windows环境用户直接通过pip安装的shapely库可能出现`[winRrror 126] 找不到指定模块的问题`。建议从[这里](https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely)下载shapely安装包完成安装。
<a name="2"></a>
## 2. 便捷使用
<a name="21"></a>
### 2.1 命令行使用
PaddleOCR提供了一系列测试图片点击[这里](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip)下载并解压,然后在终端中切换到相应目录
```
cd /path/to/ppocr_img
```
如果不使用提供的测试图片,可以将下方`--image_dir`参数替换为相应的测试图片路径。
<a name="211"></a>
#### 2.1.1 中英文模型
* 检测+方向分类器+识别全流程:`--use_angle_cls true`设置使用方向分类器识别180度旋转文字`--use_gpu false`设置不使用GPU
```bash
paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true --use_gpu false
```
结果是一个list每个item包含了文本框文字和识别置信度
```bash
[[[28.0, 37.0], [302.0, 39.0], [302.0, 72.0], [27.0, 70.0]], ('纯臻营养护发素', 0.9658738374710083)]
......
```
- 单独使用检测:设置`--rec`为`false`
```bash
paddleocr --image_dir ./imgs/11.jpg --rec false
```
结果是一个list每个item只包含文本框
```bash
[[27.0, 459.0], [136.0, 459.0], [136.0, 479.0], [27.0, 479.0]]
[[28.0, 429.0], [372.0, 429.0], [372.0, 445.0], [28.0, 445.0]]
......
```
- 单独使用识别:设置`--det`为`false`
```bash
paddleocr --image_dir ./imgs_words/ch/word_1.jpg --det false
```
结果是一个list每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.994467]
```
如需使用2.0模型,请指定参数`--ocr_version PP-OCR`paddleocr默认使用PP-OCRv3模型(`--ocr_version PP-OCRv3`)。更多whl包使用可参考[whl包文档](./whl.md)
<a name="212"></a>
#### 2.1.2 多语言模型
PaddleOCR目前支持80个语种可以通过修改`--lang`参数进行切换,对于英文模型,指定`--lang=en`。
``` bash
paddleocr --image_dir ./imgs_en/254.jpg --lang=en
```
<div align="center">
<img src="../imgs_en/254.jpg" width="300" height="600">
<img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
结果是一个list每个item包含了文本框文字和识别置信度
```text
[[[67.0, 51.0], [327.0, 46.0], [327.0, 74.0], [68.0, 80.0]], ('PHOCAPITAL', 0.9944712519645691)]
[[[72.0, 92.0], [453.0, 84.0], [454.0, 114.0], [73.0, 122.0]], ('107 State Street', 0.9744491577148438)]
[[[69.0, 135.0], [501.0, 125.0], [501.0, 156.0], [70.0, 165.0]], ('Montpelier Vermont', 0.9357033967971802)]
......
```
常用的多语言简写包括
| 语种 | 缩写 | | 语种 | 缩写 | | 语种 | 缩写 |
| -------- | ----------- | ---- | -------- | ------ | ---- | -------- | ------ |
| 中文 | ch | | 法文 | fr | | 日文 | japan |
| 英文 | en | | 德文 | german | | 韩文 | korean |
| 繁体中文 | chinese_cht | | 意大利文 | it | | 俄罗斯文 | ru |
全部语种及其对应的缩写列表可查看[多语言模型教程](./multi_languages.md)
<a name="22"></a>
### 2.2 Python脚本使用
<a name="221"></a>
#### 2.2.1 中英文与多语言使用
通过Python脚本使用PaddleOCR whl包whl包会自动下载ppocr轻量级模型作为默认模型。
* 检测+方向分类器+识别全流程
```python
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
img_path = './imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list每个item包含了文本框文字和识别置信度
```bash
[[[28.0, 37.0], [302.0, 39.0], [302.0, 72.0], [27.0, 70.0]], ('纯臻营养护发素', 0.9658738374710083)]
......
```
结果可视化
<div align="center">
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>
<a name="3"></a>
## 3. 小结
通过本节内容相信您已经熟练掌握PaddleOCR whl包的使用方法并获得了初步效果。
PaddleOCR是一套丰富领先实用的OCR工具库打通数据、模型训练、压缩和推理部署全流程您可以参考[文档教程](../../README_ch.md#文档教程)正式开启PaddleOCR的应用之旅。