hiroi-sora 192300837f
Fix cpp_infer "--enable_mkldnn=false" not effective (#13539)
* Fix "--enable_mkldnn=false" not effective

When using the --enable_mkldnn command line option, MKLDNN should be enabled when set to true and disabled when set to false. But, using the PaddlePaddle v3.0.0-beta1 inference library, the --enable_mkldnn=false option did not work as expected, causing MKLDNN to remain enabled regardless of the setting.

This commit adds a call to `config.DisableMKLDNN()` in the else branch to explicitly disable MKLDNN when `--enable_mkldnn=false` is set.

* fix code style: clang-format
2024-07-29 17:01:40 +08:00

184 lines
7.0 KiB
C++

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/ocr_rec.h>
namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
std::vector<std::string> &rec_texts,
std::vector<float> &rec_text_scores,
std::vector<double> &times) {
std::chrono::duration<float> preprocess_diff =
std::chrono::duration<float>::zero();
std::chrono::duration<float> inference_diff =
std::chrono::duration<float>::zero();
std::chrono::duration<float> postprocess_diff =
std::chrono::duration<float>::zero();
int img_num = img_list.size();
std::vector<float> width_list;
for (int i = 0; i < img_num; i++) {
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
}
std::vector<int> indices = Utility::argsort(width_list);
for (int beg_img_no = 0; beg_img_no < img_num;
beg_img_no += this->rec_batch_num_) {
auto preprocess_start = std::chrono::steady_clock::now();
int end_img_no = std::min(img_num, beg_img_no + this->rec_batch_num_);
int batch_num = end_img_no - beg_img_no;
int imgH = this->rec_image_shape_[1];
int imgW = this->rec_image_shape_[2];
float max_wh_ratio = imgW * 1.0 / imgH;
for (int ino = beg_img_no; ino < end_img_no; ino++) {
int h = img_list[indices[ino]].rows;
int w = img_list[indices[ino]].cols;
float wh_ratio = w * 1.0 / h;
max_wh_ratio = std::max(max_wh_ratio, wh_ratio);
}
int batch_width = imgW;
std::vector<cv::Mat> norm_img_batch;
for (int ino = beg_img_no; ino < end_img_no; ino++) {
cv::Mat srcimg;
img_list[indices[ino]].copyTo(srcimg);
cv::Mat resize_img;
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
this->use_tensorrt_, this->rec_image_shape_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
norm_img_batch.push_back(resize_img);
batch_width = std::max(resize_img.cols, batch_width);
}
std::vector<float> input(batch_num * 3 * imgH * batch_width, 0.0f);
this->permute_op_.Run(norm_img_batch, input.data());
auto preprocess_end = std::chrono::steady_clock::now();
preprocess_diff += preprocess_end - preprocess_start;
// Inference.
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({batch_num, 3, imgH, batch_width});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> predict_batch;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto predict_shape = output_t->shape();
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>());
predict_batch.resize(out_num);
// predict_batch is the result of Last FC with softmax
output_t->CopyToCpu(predict_batch.data());
auto inference_end = std::chrono::steady_clock::now();
inference_diff += inference_end - inference_start;
// ctc decode
auto postprocess_start = std::chrono::steady_clock::now();
for (int m = 0; m < predict_shape[0]; m++) {
std::string str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < predict_shape[1]; n++) {
// get idx
argmax_idx = int(Utility::argmax(
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
// get score
max_value = float(*std::max_element(
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
str_res += label_list_[argmax_idx];
}
last_index = argmax_idx;
}
score /= count;
if (std::isnan(score)) {
continue;
}
rec_texts[indices[beg_img_no + m]] = str_res;
rec_text_scores[indices[beg_img_no + m]] = score;
}
auto postprocess_end = std::chrono::steady_clock::now();
postprocess_diff += postprocess_end - postprocess_start;
}
times.push_back(double(preprocess_diff.count() * 1000));
times.push_back(double(inference_diff.count() * 1000));
times.push_back(double(postprocess_diff.count() * 1000));
}
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
paddle_infer::Config config;
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
std::cout << "In PP-OCRv3, default rec_img_h is 48,"
<< "if you use other model, you should set the param rec_img_h=32"
<< std::endl;
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
if (this->use_tensorrt_) {
auto precision = paddle_infer::Config::Precision::kFloat32;
if (this->precision_ == "fp16") {
precision = paddle_infer::Config::Precision::kHalf;
}
if (this->precision_ == "int8") {
precision = paddle_infer::Config::Precision::kInt8;
}
if (!Utility::PathExists("./trt_rec_shape.txt")) {
config.CollectShapeRangeInfo("./trt_rec_shape.txt");
} else {
config.EnableTunedTensorRtDynamicShape("./trt_rec_shape.txt", true);
}
}
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
// cache 10 different shapes for mkldnn to avoid memory leak
config.SetMkldnnCacheCapacity(10);
} else {
config.DisableMKLDNN();
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// get pass_builder object
auto pass_builder = config.pass_builder();
// delete "matmul_transpose_reshape_fuse_pass"
pass_builder->DeletePass("matmul_transpose_reshape_fuse_pass");
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
// config.DisableGlogInfo();
this->predictor_ = paddle_infer::CreatePredictor(config);
}
} // namespace PaddleOCR