mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
* Fix "--enable_mkldnn=false" not effective When using the --enable_mkldnn command line option, MKLDNN should be enabled when set to true and disabled when set to false. But, using the PaddlePaddle v3.0.0-beta1 inference library, the --enable_mkldnn=false option did not work as expected, causing MKLDNN to remain enabled regardless of the setting. This commit adds a call to `config.DisableMKLDNN()` in the else branch to explicitly disable MKLDNN when `--enable_mkldnn=false` is set. * fix code style: clang-format
184 lines
7.0 KiB
C++
184 lines
7.0 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <include/ocr_rec.h>
|
|
|
|
namespace PaddleOCR {
|
|
|
|
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
|
|
std::vector<std::string> &rec_texts,
|
|
std::vector<float> &rec_text_scores,
|
|
std::vector<double> ×) {
|
|
std::chrono::duration<float> preprocess_diff =
|
|
std::chrono::duration<float>::zero();
|
|
std::chrono::duration<float> inference_diff =
|
|
std::chrono::duration<float>::zero();
|
|
std::chrono::duration<float> postprocess_diff =
|
|
std::chrono::duration<float>::zero();
|
|
|
|
int img_num = img_list.size();
|
|
std::vector<float> width_list;
|
|
for (int i = 0; i < img_num; i++) {
|
|
width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
|
|
}
|
|
std::vector<int> indices = Utility::argsort(width_list);
|
|
|
|
for (int beg_img_no = 0; beg_img_no < img_num;
|
|
beg_img_no += this->rec_batch_num_) {
|
|
auto preprocess_start = std::chrono::steady_clock::now();
|
|
int end_img_no = std::min(img_num, beg_img_no + this->rec_batch_num_);
|
|
int batch_num = end_img_no - beg_img_no;
|
|
int imgH = this->rec_image_shape_[1];
|
|
int imgW = this->rec_image_shape_[2];
|
|
float max_wh_ratio = imgW * 1.0 / imgH;
|
|
for (int ino = beg_img_no; ino < end_img_no; ino++) {
|
|
int h = img_list[indices[ino]].rows;
|
|
int w = img_list[indices[ino]].cols;
|
|
float wh_ratio = w * 1.0 / h;
|
|
max_wh_ratio = std::max(max_wh_ratio, wh_ratio);
|
|
}
|
|
|
|
int batch_width = imgW;
|
|
std::vector<cv::Mat> norm_img_batch;
|
|
for (int ino = beg_img_no; ino < end_img_no; ino++) {
|
|
cv::Mat srcimg;
|
|
img_list[indices[ino]].copyTo(srcimg);
|
|
cv::Mat resize_img;
|
|
this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
|
|
this->use_tensorrt_, this->rec_image_shape_);
|
|
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
|
this->is_scale_);
|
|
norm_img_batch.push_back(resize_img);
|
|
batch_width = std::max(resize_img.cols, batch_width);
|
|
}
|
|
|
|
std::vector<float> input(batch_num * 3 * imgH * batch_width, 0.0f);
|
|
this->permute_op_.Run(norm_img_batch, input.data());
|
|
auto preprocess_end = std::chrono::steady_clock::now();
|
|
preprocess_diff += preprocess_end - preprocess_start;
|
|
// Inference.
|
|
auto input_names = this->predictor_->GetInputNames();
|
|
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
|
input_t->Reshape({batch_num, 3, imgH, batch_width});
|
|
auto inference_start = std::chrono::steady_clock::now();
|
|
input_t->CopyFromCpu(input.data());
|
|
this->predictor_->Run();
|
|
|
|
std::vector<float> predict_batch;
|
|
auto output_names = this->predictor_->GetOutputNames();
|
|
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
|
auto predict_shape = output_t->shape();
|
|
|
|
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
|
std::multiplies<int>());
|
|
predict_batch.resize(out_num);
|
|
// predict_batch is the result of Last FC with softmax
|
|
output_t->CopyToCpu(predict_batch.data());
|
|
auto inference_end = std::chrono::steady_clock::now();
|
|
inference_diff += inference_end - inference_start;
|
|
// ctc decode
|
|
auto postprocess_start = std::chrono::steady_clock::now();
|
|
for (int m = 0; m < predict_shape[0]; m++) {
|
|
std::string str_res;
|
|
int argmax_idx;
|
|
int last_index = 0;
|
|
float score = 0.f;
|
|
int count = 0;
|
|
float max_value = 0.0f;
|
|
|
|
for (int n = 0; n < predict_shape[1]; n++) {
|
|
// get idx
|
|
argmax_idx = int(Utility::argmax(
|
|
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
|
|
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
|
|
// get score
|
|
max_value = float(*std::max_element(
|
|
&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
|
|
&predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
|
|
|
|
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
|
score += max_value;
|
|
count += 1;
|
|
str_res += label_list_[argmax_idx];
|
|
}
|
|
last_index = argmax_idx;
|
|
}
|
|
score /= count;
|
|
if (std::isnan(score)) {
|
|
continue;
|
|
}
|
|
rec_texts[indices[beg_img_no + m]] = str_res;
|
|
rec_text_scores[indices[beg_img_no + m]] = score;
|
|
}
|
|
auto postprocess_end = std::chrono::steady_clock::now();
|
|
postprocess_diff += postprocess_end - postprocess_start;
|
|
}
|
|
times.push_back(double(preprocess_diff.count() * 1000));
|
|
times.push_back(double(inference_diff.count() * 1000));
|
|
times.push_back(double(postprocess_diff.count() * 1000));
|
|
}
|
|
|
|
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
|
paddle_infer::Config config;
|
|
config.SetModel(model_dir + "/inference.pdmodel",
|
|
model_dir + "/inference.pdiparams");
|
|
std::cout << "In PP-OCRv3, default rec_img_h is 48,"
|
|
<< "if you use other model, you should set the param rec_img_h=32"
|
|
<< std::endl;
|
|
if (this->use_gpu_) {
|
|
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
|
if (this->use_tensorrt_) {
|
|
auto precision = paddle_infer::Config::Precision::kFloat32;
|
|
if (this->precision_ == "fp16") {
|
|
precision = paddle_infer::Config::Precision::kHalf;
|
|
}
|
|
if (this->precision_ == "int8") {
|
|
precision = paddle_infer::Config::Precision::kInt8;
|
|
}
|
|
if (!Utility::PathExists("./trt_rec_shape.txt")) {
|
|
config.CollectShapeRangeInfo("./trt_rec_shape.txt");
|
|
} else {
|
|
config.EnableTunedTensorRtDynamicShape("./trt_rec_shape.txt", true);
|
|
}
|
|
}
|
|
} else {
|
|
config.DisableGpu();
|
|
if (this->use_mkldnn_) {
|
|
config.EnableMKLDNN();
|
|
// cache 10 different shapes for mkldnn to avoid memory leak
|
|
config.SetMkldnnCacheCapacity(10);
|
|
} else {
|
|
config.DisableMKLDNN();
|
|
}
|
|
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
|
}
|
|
|
|
// get pass_builder object
|
|
auto pass_builder = config.pass_builder();
|
|
// delete "matmul_transpose_reshape_fuse_pass"
|
|
pass_builder->DeletePass("matmul_transpose_reshape_fuse_pass");
|
|
config.SwitchUseFeedFetchOps(false);
|
|
// true for multiple input
|
|
config.SwitchSpecifyInputNames(true);
|
|
|
|
config.SwitchIrOptim(true);
|
|
|
|
config.EnableMemoryOptim();
|
|
// config.DisableGlogInfo();
|
|
|
|
this->predictor_ = paddle_infer::CreatePredictor(config);
|
|
}
|
|
|
|
} // namespace PaddleOCR
|