PaddleOCR/test_tipc/benchmark_train.sh
2022-01-25 08:27:49 +00:00

143 lines
3.9 KiB
Bash

#!/bin/bash
source test_tipc/common_func.sh
# run benchmark sh
# Usage:
# bash run_benchmark_train.sh config.txt params
function func_parser_params(){
strs=$1
IFS="="
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function func_sed_params(){
filename=$1
line=$2
param_value=$3
params=`sed -n "${line}p" $filename`
IFS=":"
array=(${params})
key=${array[0]}
value=${array[1]}
if [[ $value =~ 'benchmark_train' ]];then
IFS='='
_val=(${value})
param_value="${_val[0]}=${param_value}"
fi
new_params="${key}:${param_value}"
IFS=";"
cmd="sed -i '${line}s/.*/${new_params}/' '${filename}'"
eval $cmd
}
function set_gpu_id(){
string=$1
_str=${string:1:6}
IFS="C"
arr=(${_str})
M=${arr[0]}
P=${arr[1]}
gn=`expr $P - 1`
gpu_num=`expr $gn / $M`
seq=`seq -s "," 0 $gpu_num`
echo $seq
}
function get_repo_name(){
IFS=";"
cur_dir=$(pwd)
IFS="/"
arr=(${cur_dir})
echo ${arr[-1]}
}
FILENAME=$1
# MODE be one of ['benchmark_train']
MODE=$2
params=$3
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt benchmark_train dynamic_bs8_null_SingleP_DP_N1C1
IFS="\n"
# FILENAME="test_tipc/configs/det_mv3_db_v2.0/train_benchmark.txt"
# MODE="benchmark_train"
# params="dynamic_bs8_fp32_SingleP_DP_N1C4"
# parser params from input: modeltype_bs${bs_item}_${fp_item}_${run_process_type}_${run_mode}_${device_num}
IFS="_"
params_list=(${params})
model_type=${params_list[0]}
batch_size=${params_list[1]}
batch_size=`echo ${batch_size} | tr -cd "[0-9]" `
precision=${params_list[2]}
run_process_type=${params_list[3]}
run_mode=${params_list[4]}
device_num=${params_list[5]}
device_num_copy=$device_num
IFS=";"
echo $precision
# sed batchsize and precision
func_sed_params "$FILENAME" "6" "$precision"
func_sed_params "$FILENAME" "9" "$batch_size"
# parser params from train_benchmark.txt
dataline=`cat $FILENAME`
# parser params
IFS=$'\n'
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
# 获取benchmark_params所在的行数
line_num=`grep -n "benchmark_params" $FILENAME | cut -d ":" -f 1`
# for train log parser
line_num=`expr $line_num + 3`
ips_unit_value=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
skip_steps_value=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
keyword_value=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
convergence_key_value=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
flags_value=$(func_parser_value "${lines[line_num]}")
gpu_id=$(set_gpu_id $device_num)
repo_name=$(get_repo_name )
SAVE_LOG="benchmark_log"
if [ ${#gpu_id} -le 1 ];then
log_path="$SAVE_LOG/profiling_log"
mkdir -p $log_path
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_profiling"
func_sed_params "$FILENAME" "4" "0" # sed used gpu_id
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
echo $cmd
eval $cmd
# without profile
log_path="$SAVE_LOG/train_log"
mkdir -p $log_path
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
func_sed_params "$FILENAME" "13" "null" # sed used gpu_id
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
echo $cmd
eval $cmd
else
log_path="$SAVE_LOG/train_log"
mkdir -p $log_path
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_process_type}_${run_mode}_${device_num}_log"
func_sed_params "$FILENAME" "4" "$gpu_id" # sed used gpu_id
func_sed_params "$FILENAME" "13" "$null" # sed --profile_option as null
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
eval $cmd
fi