PaddleOCR/tools/infer/predict_det.py

491 lines
19 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
import cv2
import numpy as np
import time
import sys
import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
import json
class TextDetector(object):
def __init__(self, args, logger=None):
if logger is None:
logger = get_logger()
self.args = args
self.det_algorithm = args.det_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [
{
"DetResizeForTest": {
"limit_side_len": args.det_limit_side_len,
"limit_type": args.det_limit_type,
}
},
{
"NormalizeImage": {
"std": [0.229, 0.224, 0.225],
"mean": [0.485, 0.456, 0.406],
"scale": "1./255.",
"order": "hwc",
}
},
{"ToCHWImage": None},
{"KeepKeys": {"keep_keys": ["image", "shape"]}},
]
postprocess_params = {}
if self.det_algorithm == "DB":
postprocess_params["name"] = "DBPostProcess"
postprocess_params["thresh"] = args.det_db_thresh
postprocess_params["box_thresh"] = args.det_db_box_thresh
postprocess_params["max_candidates"] = 1000
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
postprocess_params["use_dilation"] = args.use_dilation
postprocess_params["score_mode"] = args.det_db_score_mode
postprocess_params["box_type"] = args.det_box_type
elif self.det_algorithm == "DB++":
postprocess_params["name"] = "DBPostProcess"
postprocess_params["thresh"] = args.det_db_thresh
postprocess_params["box_thresh"] = args.det_db_box_thresh
postprocess_params["max_candidates"] = 1000
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
postprocess_params["use_dilation"] = args.use_dilation
postprocess_params["score_mode"] = args.det_db_score_mode
postprocess_params["box_type"] = args.det_box_type
pre_process_list[1] = {
"NormalizeImage": {
"std": [1.0, 1.0, 1.0],
"mean": [0.48109378172549, 0.45752457890196, 0.40787054090196],
"scale": "1./255.",
"order": "hwc",
}
}
elif self.det_algorithm == "EAST":
postprocess_params["name"] = "EASTPostProcess"
postprocess_params["score_thresh"] = args.det_east_score_thresh
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
pre_process_list[0] = {
"DetResizeForTest": {"resize_long": args.det_limit_side_len}
}
postprocess_params["name"] = "SASTPostProcess"
postprocess_params["score_thresh"] = args.det_sast_score_thresh
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
if args.det_box_type == "poly":
postprocess_params["sample_pts_num"] = 6
postprocess_params["expand_scale"] = 1.2
postprocess_params["shrink_ratio_of_width"] = 0.2
else:
postprocess_params["sample_pts_num"] = 2
postprocess_params["expand_scale"] = 1.0
postprocess_params["shrink_ratio_of_width"] = 0.3
elif self.det_algorithm == "PSE":
postprocess_params["name"] = "PSEPostProcess"
postprocess_params["thresh"] = args.det_pse_thresh
postprocess_params["box_thresh"] = args.det_pse_box_thresh
postprocess_params["min_area"] = args.det_pse_min_area
postprocess_params["box_type"] = args.det_box_type
postprocess_params["scale"] = args.det_pse_scale
elif self.det_algorithm == "FCE":
pre_process_list[0] = {"DetResizeForTest": {"rescale_img": [1080, 736]}}
postprocess_params["name"] = "FCEPostProcess"
postprocess_params["scales"] = args.scales
postprocess_params["alpha"] = args.alpha
postprocess_params["beta"] = args.beta
postprocess_params["fourier_degree"] = args.fourier_degree
postprocess_params["box_type"] = args.det_box_type
elif self.det_algorithm == "CT":
pre_process_list[0] = {"ScaleAlignedShort": {"short_size": 640}}
postprocess_params["name"] = "CTPostProcess"
else:
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
(
self.predictor,
self.input_tensor,
self.output_tensors,
self.config,
) = utility.create_predictor(args, "det", logger)
if self.use_onnx:
img_h, img_w = self.input_tensor.shape[2:]
if isinstance(img_h, str) or isinstance(img_w, str):
pass
elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
pre_process_list[0] = {
"DetResizeForTest": {"image_shape": [img_h, img_w]}
}
self.preprocess_op = create_operators(pre_process_list)
if args.benchmark:
import auto_log
pid = os.getpid()
gpu_id = utility.get_infer_gpuid()
self.autolog = auto_log.AutoLogger(
model_name="det",
model_precision=args.precision,
batch_size=1,
data_shape="dynamic",
save_path=None, # not used if logger is not None
inference_config=self.config,
pids=pid,
process_name=None,
gpu_ids=gpu_id if args.use_gpu else None,
time_keys=["preprocess_time", "inference_time", "postprocess_time"],
warmup=2,
logger=logger,
)
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
diff = np.diff(np.array(tmp), axis=1)
rect[1] = tmp[np.argmin(diff)]
rect[3] = tmp[np.argmax(diff)]
return rect
def pad_polygons(self, polygon, max_points):
padding_size = max_points - len(polygon)
if padding_size == 0:
return polygon
last_point = polygon[-1]
padding = np.repeat([last_point], padding_size, axis=0)
return np.vstack([polygon, padding])
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
if type(box) is list:
box = np.array(box)
box = self.order_points_clockwise(box)
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 3 or rect_height <= 3:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
if type(box) is list:
box = np.array(box)
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
if len(dt_boxes_new) > 0:
max_points = max(len(polygon) for polygon in dt_boxes_new)
dt_boxes_new = [
self.pad_polygons(polygon, max_points) for polygon in dt_boxes_new
]
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def predict(self, img):
ori_im = img.copy()
data = {"image": img}
st = time.time()
if self.args.benchmark:
self.autolog.times.start()
data = transform(data, self.preprocess_op)
img, shape_list = data
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
if self.args.benchmark:
self.autolog.times.stamp()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
else:
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.args.benchmark:
self.autolog.times.stamp()
preds = {}
if self.det_algorithm == "EAST":
preds["f_geo"] = outputs[0]
preds["f_score"] = outputs[1]
elif self.det_algorithm == "SAST":
preds["f_border"] = outputs[0]
preds["f_score"] = outputs[1]
preds["f_tco"] = outputs[2]
preds["f_tvo"] = outputs[3]
elif self.det_algorithm in ["DB", "PSE", "DB++"]:
preds["maps"] = outputs[0]
elif self.det_algorithm == "FCE":
for i, output in enumerate(outputs):
preds["level_{}".format(i)] = output
elif self.det_algorithm == "CT":
preds["maps"] = outputs[0]
preds["score"] = outputs[1]
else:
raise NotImplementedError
post_result = self.postprocess_op(preds, shape_list)
dt_boxes = post_result[0]["points"]
if self.args.det_box_type == "poly":
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
else:
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
if self.args.benchmark:
self.autolog.times.end(stamp=True)
et = time.time()
return dt_boxes, et - st
def __call__(self, img, use_slice=False):
# For image like poster with one side much greater than the other side,
# splitting recursively and processing with overlap to enhance performance.
MIN_BOUND_DISTANCE = 50
dt_boxes = np.zeros((0, 4, 2), dtype=np.float32)
elapse = 0
if (
img.shape[0] / img.shape[1] > 2
and img.shape[0] > self.args.det_limit_side_len
and use_slice
):
start_h = 0
end_h = 0
while end_h <= img.shape[0]:
end_h = start_h + img.shape[1] * 3 // 4
subimg = img[start_h:end_h, :]
if len(subimg) == 0:
break
sub_dt_boxes, sub_elapse = self.predict(subimg)
offset = start_h
# To prevent text blocks from being cut off, roll back a certain buffer area.
if (
len(sub_dt_boxes) == 0
or img.shape[1] - max([x[-1][1] for x in sub_dt_boxes])
> MIN_BOUND_DISTANCE
):
start_h = end_h
else:
sorted_indices = np.argsort(sub_dt_boxes[:, 2, 1])
sub_dt_boxes = sub_dt_boxes[sorted_indices]
bottom_line = (
0
if len(sub_dt_boxes) <= 1
else int(np.max(sub_dt_boxes[:-1, 2, 1]))
)
if bottom_line > 0:
start_h += bottom_line
sub_dt_boxes = sub_dt_boxes[
sub_dt_boxes[:, 2, 1] <= bottom_line
]
else:
start_h = end_h
if len(sub_dt_boxes) > 0:
if dt_boxes.shape[0] == 0:
dt_boxes = sub_dt_boxes + np.array(
[0, offset], dtype=np.float32
)
else:
dt_boxes = np.append(
dt_boxes,
sub_dt_boxes + np.array([0, offset], dtype=np.float32),
axis=0,
)
elapse += sub_elapse
elif (
img.shape[1] / img.shape[0] > 3
and img.shape[1] > self.args.det_limit_side_len * 3
and use_slice
):
start_w = 0
end_w = 0
while end_w <= img.shape[1]:
end_w = start_w + img.shape[0] * 3 // 4
subimg = img[:, start_w:end_w]
if len(subimg) == 0:
break
sub_dt_boxes, sub_elapse = self.predict(subimg)
offset = start_w
if (
len(sub_dt_boxes) == 0
or img.shape[0] - max([x[-1][0] for x in sub_dt_boxes])
> MIN_BOUND_DISTANCE
):
start_w = end_w
else:
sorted_indices = np.argsort(sub_dt_boxes[:, 2, 0])
sub_dt_boxes = sub_dt_boxes[sorted_indices]
right_line = (
0
if len(sub_dt_boxes) <= 1
else int(np.max(sub_dt_boxes[:-1, 1, 0]))
)
if right_line > 0:
start_w += right_line
sub_dt_boxes = sub_dt_boxes[sub_dt_boxes[:, 1, 0] <= right_line]
else:
start_w = end_w
if len(sub_dt_boxes) > 0:
if dt_boxes.shape[0] == 0:
dt_boxes = sub_dt_boxes + np.array(
[offset, 0], dtype=np.float32
)
else:
dt_boxes = np.append(
dt_boxes,
sub_dt_boxes + np.array([offset, 0], dtype=np.float32),
axis=0,
)
elapse += sub_elapse
else:
dt_boxes, elapse = self.predict(img)
return dt_boxes, elapse
if __name__ == "__main__":
args = utility.parse_args()
image_file_list = get_image_file_list(args.image_dir)
total_time = 0
draw_img_save_dir = args.draw_img_save_dir
os.makedirs(draw_img_save_dir, exist_ok=True)
# logger
log_file = args.save_log_path
if os.path.isdir(args.save_log_path) or (
not os.path.exists(args.save_log_path) and args.save_log_path.endswith("/")
):
log_file = os.path.join(log_file, "benchmark_detection.log")
logger = get_logger(log_file=log_file)
# create text detector
text_detector = TextDetector(args, logger)
if args.warmup:
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
for i in range(2):
res = text_detector(img)
save_results = []
for idx, image_file in enumerate(image_file_list):
img, flag_gif, flag_pdf = check_and_read(image_file)
if not flag_gif and not flag_pdf:
img = cv2.imread(image_file)
if not flag_pdf:
if img is None:
logger.debug("error in loading image:{}".format(image_file))
continue
imgs = [img]
else:
page_num = args.page_num
if page_num > len(img) or page_num == 0:
page_num = len(img)
imgs = img[:page_num]
for index, img in enumerate(imgs):
st = time.time()
dt_boxes, _ = text_detector(img)
elapse = time.time() - st
total_time += elapse
if len(imgs) > 1:
save_pred = (
os.path.basename(image_file)
+ "_"
+ str(index)
+ "\t"
+ str(json.dumps([x.tolist() for x in dt_boxes]))
+ "\n"
)
else:
save_pred = (
os.path.basename(image_file)
+ "\t"
+ str(json.dumps([x.tolist() for x in dt_boxes]))
+ "\n"
)
save_results.append(save_pred)
logger.info(save_pred)
if len(imgs) > 1:
logger.info(
"{}_{} The predict time of {}: {}".format(
idx, index, image_file, elapse
)
)
else:
logger.info(
"{} The predict time of {}: {}".format(idx, image_file, elapse)
)
src_im = utility.draw_text_det_res(dt_boxes, img)
if flag_gif:
save_file = image_file[:-3] + "png"
elif flag_pdf:
save_file = image_file.replace(".pdf", "_" + str(index) + ".png")
else:
save_file = image_file
img_path = os.path.join(
draw_img_save_dir, "det_res_{}".format(os.path.basename(save_file))
)
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
with open(os.path.join(draw_img_save_dir, "det_results.txt"), "w") as f:
f.writelines(save_results)
f.close()
if args.benchmark:
text_detector.autolog.report()