339 lines
11 KiB
Python
339 lines
11 KiB
Python
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is refer from:
|
|
https://github.com/LBH1024/CAN/models/can.py
|
|
https://github.com/LBH1024/CAN/models/counting.py
|
|
https://github.com/LBH1024/CAN/models/decoder.py
|
|
https://github.com/LBH1024/CAN/models/attention.py
|
|
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle.nn as nn
|
|
import paddle
|
|
import math
|
|
|
|
"""
|
|
Counting Module
|
|
"""
|
|
|
|
|
|
class ChannelAtt(nn.Layer):
|
|
def __init__(self, channel, reduction):
|
|
super(ChannelAtt, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2D(1)
|
|
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(channel, channel // reduction),
|
|
nn.ReLU(),
|
|
nn.Linear(channel // reduction, channel),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, x):
|
|
b, c, _, _ = x.shape
|
|
y = paddle.reshape(self.avg_pool(x), [b, c])
|
|
y = paddle.reshape(self.fc(y), [b, c, 1, 1])
|
|
return x * y
|
|
|
|
|
|
class CountingDecoder(nn.Layer):
|
|
def __init__(self, in_channel, out_channel, kernel_size):
|
|
super(CountingDecoder, self).__init__()
|
|
self.in_channel = in_channel
|
|
self.out_channel = out_channel
|
|
|
|
self.trans_layer = nn.Sequential(
|
|
nn.Conv2D(
|
|
self.in_channel,
|
|
512,
|
|
kernel_size=kernel_size,
|
|
padding=kernel_size // 2,
|
|
bias_attr=False,
|
|
),
|
|
nn.BatchNorm2D(512),
|
|
)
|
|
|
|
self.channel_att = ChannelAtt(512, 16)
|
|
|
|
self.pred_layer = nn.Sequential(
|
|
nn.Conv2D(512, self.out_channel, kernel_size=1, bias_attr=False),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, x, mask):
|
|
b, _, h, w = x.shape
|
|
x = self.trans_layer(x)
|
|
x = self.channel_att(x)
|
|
x = self.pred_layer(x)
|
|
|
|
if mask is not None:
|
|
x = x * mask
|
|
x = paddle.reshape(x, [b, self.out_channel, -1])
|
|
x1 = paddle.sum(x, axis=-1)
|
|
|
|
return x1, paddle.reshape(x, [b, self.out_channel, h, w])
|
|
|
|
|
|
"""
|
|
Attention Decoder
|
|
"""
|
|
|
|
|
|
class PositionEmbeddingSine(nn.Layer):
|
|
def __init__(
|
|
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
|
|
):
|
|
super().__init__()
|
|
self.num_pos_feats = num_pos_feats
|
|
self.temperature = temperature
|
|
self.normalize = normalize
|
|
if scale is not None and normalize is False:
|
|
raise ValueError("normalize should be True if scale is passed")
|
|
if scale is None:
|
|
scale = 2 * math.pi
|
|
self.scale = scale
|
|
|
|
def forward(self, x, mask):
|
|
y_embed = paddle.cumsum(mask, 1, dtype="float32")
|
|
x_embed = paddle.cumsum(mask, 2, dtype="float32")
|
|
|
|
if self.normalize:
|
|
eps = 1e-6
|
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
|
dim_t = paddle.arange(self.num_pos_feats, dtype="float32")
|
|
dim_d = paddle.expand(paddle.to_tensor(2), dim_t.shape)
|
|
dim_t = self.temperature ** (
|
|
2 * (dim_t / dim_d).astype("int64") / self.num_pos_feats
|
|
)
|
|
|
|
pos_x = paddle.unsqueeze(x_embed, [3]) / dim_t
|
|
pos_y = paddle.unsqueeze(y_embed, [3]) / dim_t
|
|
|
|
pos_x = paddle.flatten(
|
|
paddle.stack(
|
|
[paddle.sin(pos_x[:, :, :, 0::2]), paddle.cos(pos_x[:, :, :, 1::2])],
|
|
axis=4,
|
|
),
|
|
3,
|
|
)
|
|
pos_y = paddle.flatten(
|
|
paddle.stack(
|
|
[paddle.sin(pos_y[:, :, :, 0::2]), paddle.cos(pos_y[:, :, :, 1::2])],
|
|
axis=4,
|
|
),
|
|
3,
|
|
)
|
|
|
|
pos = paddle.transpose(paddle.concat([pos_y, pos_x], axis=3), [0, 3, 1, 2])
|
|
|
|
return pos
|
|
|
|
|
|
class AttDecoder(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
ratio,
|
|
is_train,
|
|
input_size,
|
|
hidden_size,
|
|
encoder_out_channel,
|
|
dropout,
|
|
dropout_ratio,
|
|
word_num,
|
|
counting_decoder_out_channel,
|
|
attention,
|
|
):
|
|
super(AttDecoder, self).__init__()
|
|
self.input_size = input_size
|
|
self.hidden_size = hidden_size
|
|
self.out_channel = encoder_out_channel
|
|
self.attention_dim = attention["attention_dim"]
|
|
self.dropout_prob = dropout
|
|
self.ratio = ratio
|
|
self.word_num = word_num
|
|
|
|
self.counting_num = counting_decoder_out_channel
|
|
self.is_train = is_train
|
|
|
|
self.init_weight = nn.Linear(self.out_channel, self.hidden_size)
|
|
self.embedding = nn.Embedding(self.word_num, self.input_size)
|
|
self.word_input_gru = nn.GRUCell(self.input_size, self.hidden_size)
|
|
self.word_attention = Attention(hidden_size, attention["attention_dim"])
|
|
|
|
self.encoder_feature_conv = nn.Conv2D(
|
|
self.out_channel,
|
|
self.attention_dim,
|
|
kernel_size=attention["word_conv_kernel"],
|
|
padding=attention["word_conv_kernel"] // 2,
|
|
)
|
|
|
|
self.word_state_weight = nn.Linear(self.hidden_size, self.hidden_size)
|
|
self.word_embedding_weight = nn.Linear(self.input_size, self.hidden_size)
|
|
self.word_context_weight = nn.Linear(self.out_channel, self.hidden_size)
|
|
self.counting_context_weight = nn.Linear(self.counting_num, self.hidden_size)
|
|
self.word_convert = nn.Linear(self.hidden_size, self.word_num)
|
|
|
|
if dropout:
|
|
self.dropout = nn.Dropout(dropout_ratio)
|
|
|
|
def forward(self, cnn_features, labels, counting_preds, images_mask):
|
|
if self.is_train:
|
|
_, num_steps = labels.shape
|
|
else:
|
|
num_steps = 36
|
|
|
|
batch_size, _, height, width = cnn_features.shape
|
|
images_mask = images_mask[:, :, :: self.ratio, :: self.ratio]
|
|
|
|
word_probs = paddle.zeros((batch_size, num_steps, self.word_num))
|
|
word_alpha_sum = paddle.zeros((batch_size, 1, height, width))
|
|
|
|
hidden = self.init_hidden(cnn_features, images_mask)
|
|
counting_context_weighted = self.counting_context_weight(counting_preds)
|
|
cnn_features_trans = self.encoder_feature_conv(cnn_features)
|
|
|
|
position_embedding = PositionEmbeddingSine(256, normalize=True)
|
|
pos = position_embedding(cnn_features_trans, images_mask[:, 0, :, :])
|
|
|
|
cnn_features_trans = cnn_features_trans + pos
|
|
|
|
word = paddle.ones([batch_size, 1], dtype="int64") # init word as sos
|
|
word = word.squeeze(axis=1)
|
|
for i in range(num_steps):
|
|
word_embedding = self.embedding(word)
|
|
_, hidden = self.word_input_gru(word_embedding, hidden)
|
|
word_context_vec, _, word_alpha_sum = self.word_attention(
|
|
cnn_features, cnn_features_trans, hidden, word_alpha_sum, images_mask
|
|
)
|
|
|
|
current_state = self.word_state_weight(hidden)
|
|
word_weighted_embedding = self.word_embedding_weight(word_embedding)
|
|
word_context_weighted = self.word_context_weight(word_context_vec)
|
|
|
|
if self.dropout_prob:
|
|
word_out_state = self.dropout(
|
|
current_state
|
|
+ word_weighted_embedding
|
|
+ word_context_weighted
|
|
+ counting_context_weighted
|
|
)
|
|
else:
|
|
word_out_state = (
|
|
current_state
|
|
+ word_weighted_embedding
|
|
+ word_context_weighted
|
|
+ counting_context_weighted
|
|
)
|
|
|
|
word_prob = self.word_convert(word_out_state)
|
|
word_probs[:, i] = word_prob
|
|
|
|
if self.is_train:
|
|
word = labels[:, i]
|
|
else:
|
|
word = word_prob.argmax(1)
|
|
word = paddle.multiply(
|
|
word, labels[:, i]
|
|
) # labels are oneslike tensor in infer/predict mode
|
|
|
|
return word_probs
|
|
|
|
def init_hidden(self, features, feature_mask):
|
|
average = paddle.sum(
|
|
paddle.sum(features * feature_mask, axis=-1), axis=-1
|
|
) / paddle.sum((paddle.sum(feature_mask, axis=-1)), axis=-1)
|
|
average = self.init_weight(average)
|
|
return paddle.tanh(average)
|
|
|
|
|
|
"""
|
|
Attention Module
|
|
"""
|
|
|
|
|
|
class Attention(nn.Layer):
|
|
def __init__(self, hidden_size, attention_dim):
|
|
super(Attention, self).__init__()
|
|
self.hidden = hidden_size
|
|
self.attention_dim = attention_dim
|
|
self.hidden_weight = nn.Linear(self.hidden, self.attention_dim)
|
|
self.attention_conv = nn.Conv2D(
|
|
1, 512, kernel_size=11, padding=5, bias_attr=False
|
|
)
|
|
self.attention_weight = nn.Linear(512, self.attention_dim, bias_attr=False)
|
|
self.alpha_convert = nn.Linear(self.attention_dim, 1)
|
|
|
|
def forward(
|
|
self, cnn_features, cnn_features_trans, hidden, alpha_sum, image_mask=None
|
|
):
|
|
query = self.hidden_weight(hidden)
|
|
alpha_sum_trans = self.attention_conv(alpha_sum)
|
|
coverage_alpha = self.attention_weight(
|
|
paddle.transpose(alpha_sum_trans, [0, 2, 3, 1])
|
|
)
|
|
alpha_score = paddle.tanh(
|
|
paddle.unsqueeze(query, [1, 2])
|
|
+ coverage_alpha
|
|
+ paddle.transpose(cnn_features_trans, [0, 2, 3, 1])
|
|
)
|
|
energy = self.alpha_convert(alpha_score)
|
|
energy = energy - energy.max()
|
|
energy_exp = paddle.exp(paddle.squeeze(energy, -1))
|
|
|
|
if image_mask is not None:
|
|
energy_exp = energy_exp * paddle.squeeze(image_mask, 1)
|
|
alpha = energy_exp / (
|
|
paddle.unsqueeze(paddle.sum(paddle.sum(energy_exp, -1), -1), [1, 2]) + 1e-10
|
|
)
|
|
alpha_sum = paddle.unsqueeze(alpha, 1) + alpha_sum
|
|
context_vector = paddle.sum(
|
|
paddle.sum((paddle.unsqueeze(alpha, 1) * cnn_features), -1), -1
|
|
)
|
|
|
|
return context_vector, alpha, alpha_sum
|
|
|
|
|
|
class CANHead(nn.Layer):
|
|
def __init__(self, in_channel, out_channel, ratio, attdecoder, **kwargs):
|
|
super(CANHead, self).__init__()
|
|
|
|
self.in_channel = in_channel
|
|
self.out_channel = out_channel
|
|
|
|
self.counting_decoder1 = CountingDecoder(
|
|
self.in_channel, self.out_channel, 3
|
|
) # mscm
|
|
self.counting_decoder2 = CountingDecoder(self.in_channel, self.out_channel, 5)
|
|
|
|
self.decoder = AttDecoder(ratio, **attdecoder)
|
|
|
|
self.ratio = ratio
|
|
|
|
def forward(self, inputs, targets=None):
|
|
cnn_features, images_mask, labels = inputs
|
|
|
|
counting_mask = images_mask[:, :, :: self.ratio, :: self.ratio]
|
|
counting_preds1, _ = self.counting_decoder1(cnn_features, counting_mask)
|
|
counting_preds2, _ = self.counting_decoder2(cnn_features, counting_mask)
|
|
counting_preds = (counting_preds1 + counting_preds2) / 2
|
|
|
|
word_probs = self.decoder(cnn_features, labels, counting_preds, images_mask)
|
|
return word_probs, counting_preds, counting_preds1, counting_preds2
|