PaddleOCR/ppocr/utils/save_load.py

349 lines
13 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import pickle
import six
import json
import paddle
from ppocr.utils.logging import get_logger
from ppocr.utils.network import maybe_download_params
__all__ = ["load_model"]
def _mkdir_if_not_exist(path, logger):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
"be happy if some process has already created {}".format(path)
)
else:
raise OSError("Failed to mkdir {}".format(path))
def load_model(config, model, optimizer=None, model_type="det"):
"""
load model from checkpoint or pretrained_model
"""
logger = get_logger()
global_config = config["Global"]
checkpoints = global_config.get("checkpoints")
pretrained_model = global_config.get("pretrained_model")
best_model_dict = {}
is_float16 = False
is_nlp_model = model_type == "kie" and config["Architecture"]["algorithm"] not in [
"SDMGR"
]
if is_nlp_model is True:
# NOTE: for kie model dsitillation, resume training is not supported now
if config["Architecture"]["algorithm"] in ["Distillation"]:
return best_model_dict
checkpoints = config["Architecture"]["Backbone"]["checkpoints"]
# load kie method metric
if checkpoints:
if os.path.exists(os.path.join(checkpoints, "metric.states")):
with open(os.path.join(checkpoints, "metric.states"), "rb") as f:
states_dict = (
pickle.load(f) if six.PY2 else pickle.load(f, encoding="latin1")
)
best_model_dict = states_dict.get("best_model_dict", {})
if "epoch" in states_dict:
best_model_dict["start_epoch"] = states_dict["epoch"] + 1
logger.info("resume from {}".format(checkpoints))
if optimizer is not None:
if checkpoints[-1] in ["/", "\\"]:
checkpoints = checkpoints[:-1]
if os.path.exists(checkpoints + ".pdopt"):
optim_dict = paddle.load(checkpoints + ".pdopt")
optimizer.set_state_dict(optim_dict)
else:
logger.warning(
"{}.pdopt is not exists, params of optimizer is not loaded".format(
checkpoints
)
)
return best_model_dict
if checkpoints:
if checkpoints.endswith(".pdparams"):
checkpoints = checkpoints.replace(".pdparams", "")
assert os.path.exists(
checkpoints + ".pdparams"
), "The {}.pdparams does not exists!".format(checkpoints)
# load params from trained model
params = paddle.load(checkpoints + ".pdparams")
state_dict = model.state_dict()
new_state_dict = {}
for key, value in state_dict.items():
if key not in params:
logger.warning(
"{} not in loaded params {} !".format(key, params.keys())
)
continue
pre_value = params[key]
if pre_value.dtype == paddle.float16:
is_float16 = True
if pre_value.dtype != value.dtype:
pre_value = pre_value.astype(value.dtype)
if list(value.shape) == list(pre_value.shape):
new_state_dict[key] = pre_value
else:
logger.warning(
"The shape of model params {} {} not matched with loaded params shape {} !".format(
key, value.shape, pre_value.shape
)
)
model.set_state_dict(new_state_dict)
if is_float16:
logger.info(
"The parameter type is float16, which is converted to float32 when loading"
)
if optimizer is not None:
if os.path.exists(checkpoints + ".pdopt"):
optim_dict = paddle.load(checkpoints + ".pdopt")
optimizer.set_state_dict(optim_dict)
else:
logger.warning(
"{}.pdopt is not exists, params of optimizer is not loaded".format(
checkpoints
)
)
if os.path.exists(checkpoints + ".states"):
with open(checkpoints + ".states", "rb") as f:
states_dict = (
pickle.load(f) if six.PY2 else pickle.load(f, encoding="latin1")
)
best_model_dict = states_dict.get("best_model_dict", {})
best_model_dict["acc"] = 0.0
if "epoch" in states_dict:
best_model_dict["start_epoch"] = states_dict["epoch"] + 1
logger.info("resume from {}".format(checkpoints))
elif pretrained_model:
is_float16 = load_pretrained_params(model, pretrained_model)
else:
logger.info("train from scratch")
best_model_dict["is_float16"] = is_float16
return best_model_dict
def load_pretrained_params(model, path):
logger = get_logger()
path = maybe_download_params(path)
if path.endswith(".pdparams"):
path = path.replace(".pdparams", "")
assert os.path.exists(
path + ".pdparams"
), "The {}.pdparams does not exists!".format(path)
params = paddle.load(path + ".pdparams")
state_dict = model.state_dict()
new_state_dict = {}
is_float16 = False
for k1 in params.keys():
if k1 not in state_dict.keys():
logger.warning("The pretrained params {} not in model".format(k1))
else:
if params[k1].dtype == paddle.float16:
is_float16 = True
if params[k1].dtype != state_dict[k1].dtype:
params[k1] = params[k1].astype(state_dict[k1].dtype)
if list(state_dict[k1].shape) == list(params[k1].shape):
new_state_dict[k1] = params[k1]
else:
logger.warning(
"The shape of model params {} {} not matched with loaded params {} {} !".format(
k1, state_dict[k1].shape, k1, params[k1].shape
)
)
model.set_state_dict(new_state_dict)
if is_float16:
logger.info(
"The parameter type is float16, which is converted to float32 when loading"
)
logger.info("load pretrain successful from {}".format(path))
return is_float16
def save_model(
model,
optimizer,
model_path,
logger,
config,
is_best=False,
prefix="ppocr",
**kwargs,
):
"""
save model to the target path
"""
_mkdir_if_not_exist(model_path, logger)
model_prefix = os.path.join(model_path, prefix)
if prefix == "best_accuracy":
best_model_path = os.path.join(model_path, "best_model")
_mkdir_if_not_exist(best_model_path, logger)
paddle.save(optimizer.state_dict(), model_prefix + ".pdopt")
if prefix == "best_accuracy":
paddle.save(
optimizer.state_dict(), os.path.join(best_model_path, "model.pdopt")
)
is_nlp_model = config["Architecture"]["model_type"] == "kie" and config[
"Architecture"
]["algorithm"] not in ["SDMGR"]
if is_nlp_model is not True:
paddle.save(model.state_dict(), model_prefix + ".pdparams")
metric_prefix = model_prefix
if prefix == "best_accuracy":
paddle.save(
model.state_dict(), os.path.join(best_model_path, "model.pdparams")
)
else: # for kie system, we follow the save/load rules in NLP
if config["Global"]["distributed"]:
arch = model._layers
else:
arch = model
if config["Architecture"]["algorithm"] in ["Distillation"]:
arch = arch.Student
arch.backbone.model.save_pretrained(model_prefix)
metric_prefix = os.path.join(model_prefix, "metric")
if prefix == "best_accuracy":
arch.backbone.model.save_pretrained(best_model_path)
save_model_info = kwargs.pop("save_model_info", False)
if save_model_info:
with open(os.path.join(model_path, f"{prefix}.info.json"), "w") as f:
json.dump(kwargs, f)
logger.info("Already save model info in {}".format(model_path))
if prefix != "latest":
done_flag = kwargs.pop("done_flag", False)
update_train_results(config, prefix, save_model_info, done_flag=done_flag)
# save metric and config
with open(metric_prefix + ".states", "wb") as f:
pickle.dump(kwargs, f, protocol=2)
if is_best:
logger.info("save best model is to {}".format(model_prefix))
else:
logger.info("save model in {}".format(model_prefix))
def update_train_results(config, prefix, metric_info, done_flag=False, last_num=5):
if paddle.distributed.get_rank() != 0:
return
assert last_num >= 1
train_results_path = os.path.join(
config["Global"]["save_model_dir"], "train_results.json"
)
save_model_tag = ["pdparams", "pdopt", "pdstates"]
save_inference_tag = ["inference_config", "pdmodel", "pdiparams", "pdiparams.info"]
if os.path.exists(train_results_path):
with open(train_results_path, "r") as fp:
train_results = json.load(fp)
else:
train_results = {}
train_results["model_name"] = config["Global"]["pdx_model_name"]
label_dict_path = os.path.abspath(
config["Global"].get("character_dict_path", "")
)
if label_dict_path != "":
if not os.path.exists(label_dict_path):
label_dict_path = ""
label_dict_path = label_dict_path
train_results["label_dict"] = label_dict_path
train_results["train_log"] = "train.log"
train_results["visualdl_log"] = ""
train_results["config"] = "config.yaml"
train_results["models"] = {}
for i in range(1, last_num + 1):
train_results["models"][f"last_{i}"] = {}
train_results["models"]["best"] = {}
train_results["done_flag"] = done_flag
if "best" in prefix:
if "acc" in metric_info["metric"]:
metric_score = metric_info["metric"]["acc"]
elif "precision" in metric_info["metric"]:
metric_score = metric_info["metric"]["precision"]
elif "exp_rate" in metric_info["metric"]:
metric_score = metric_info["metric"]["exp_rate"]
else:
raise ValueError("No metric score found.")
train_results["models"]["best"]["score"] = metric_score
for tag in save_model_tag:
train_results["models"]["best"][tag] = os.path.join(
prefix, f"{prefix}.{tag}" if tag != "pdstates" else f"{prefix}.states"
)
for tag in save_inference_tag:
train_results["models"]["best"][tag] = os.path.join(
prefix,
"inference",
f"inference.{tag}" if tag != "inference_config" else "inference.yml",
)
else:
for i in range(last_num - 1, 0, -1):
train_results["models"][f"last_{i + 1}"] = train_results["models"][
f"last_{i}"
].copy()
if "acc" in metric_info["metric"]:
metric_score = metric_info["metric"]["acc"]
elif "precision" in metric_info["metric"]:
metric_score = metric_info["metric"]["precision"]
elif "exp_rate" in metric_info["metric"]:
metric_score = metric_info["metric"]["exp_rate"]
else:
metric_score = 0
train_results["models"][f"last_{1}"]["score"] = metric_score
for tag in save_model_tag:
train_results["models"][f"last_{1}"][tag] = os.path.join(
prefix, f"{prefix}.{tag}" if tag != "pdstates" else f"{prefix}.states"
)
for tag in save_inference_tag:
train_results["models"][f"last_{1}"][tag] = os.path.join(
prefix,
"inference",
f"inference.{tag}" if tag != "inference_config" else "inference.yml",
)
with open(train_results_path, "w") as fp:
json.dump(train_results, fp)