mirror of
https://github.com/PaddlePaddle/PaddleOCR.git
synced 2025-06-03 21:53:39 +08:00
121 lines
4.1 KiB
C++
121 lines
4.1 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "glog/logging.h"
|
|
#include "omp.h"
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include <chrono>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <ostream>
|
|
#include <vector>
|
|
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
#include <glog/logging.h>
|
|
#include <include/ocr_det.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <gflags/gflags.h>
|
|
|
|
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
|
|
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
|
|
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
|
|
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
|
|
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
|
|
|
|
DEFINE_string(image_dir, "", "Dir of input image.");
|
|
DEFINE_string(det_model_dir, "", "Path of det inference model.");
|
|
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
|
|
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
|
|
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
|
|
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
|
|
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
|
|
DEFINE_bool(visualize, true, "Whether show the detection results.");
|
|
|
|
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
|
|
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt.");
|
|
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace PaddleOCR;
|
|
|
|
|
|
static bool PathExists(const std::string& path){
|
|
#ifdef _WIN32
|
|
struct _stat buffer;
|
|
return (_stat(path.c_str(), &buffer) == 0);
|
|
#else
|
|
struct stat buffer;
|
|
return (stat(path.c_str(), &buffer) == 0);
|
|
#endif // !_WIN32
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv) {
|
|
// Parsing command-line
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
|
|
std::cout << "Usage: ./ocr_det --det_model_dir=/PATH/TO/INFERENCE_MODEL/ "
|
|
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
if (!PathExists(FLAGS_image_dir)) {
|
|
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
|
|
exit(1);
|
|
}
|
|
std::vector<cv::String> cv_all_img_names;
|
|
cv::glob(FLAGS_image_dir, cv_all_img_names);
|
|
std::cout << "total images num: " << cv_all_img_names.size() << endl;
|
|
|
|
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
|
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
|
|
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
|
|
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
|
|
FLAGS_use_polygon_score, FLAGS_visualize,
|
|
FLAGS_use_tensorrt, FLAGS_use_fp16);
|
|
|
|
auto start = std::chrono::system_clock::now();
|
|
|
|
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
|
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
|
|
|
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
|
|
if (!srcimg.data) {
|
|
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
|
exit(1);
|
|
}
|
|
std::vector<std::vector<std::vector<int>>> boxes;
|
|
|
|
det.Run(srcimg, boxes);
|
|
|
|
auto end = std::chrono::system_clock::now();
|
|
auto duration =
|
|
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
|
std::cout << "Cost "
|
|
<< double(duration.count()) *
|
|
std::chrono::microseconds::period::num /
|
|
std::chrono::microseconds::period::den
|
|
<< "s" << std::endl;
|
|
}
|
|
|
|
return 0;
|
|
}
|