PaddleOCR/deploy/slim/auto_compression/run.py

165 lines
5.6 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from tqdm import tqdm
import numpy as np
import argparse
import paddle
from paddleslim.common import load_config as load_slim_config
from paddleslim.common import get_logger
from paddleslim.auto_compression import AutoCompression
from paddleslim.common.dataloader import get_feed_vars
import sys
sys.path.append('../../../')
from ppocr.data import build_dataloader
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
logger = get_logger(__name__, level=logging.INFO)
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='output',
help="directory to save compressed model.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
return parser
def reader_wrapper(reader, input_name):
if isinstance(input_name, list) and len(input_name) == 1:
input_name = input_name[0]
def gen(): # 形成一个字典输入
for i, batch in enumerate(reader()):
yield {input_name: batch[0]}
return gen
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
post_process_class = build_post_process(all_config['PostProcess'],
global_config)
eval_class = build_metric(all_config['Metric'])
model_type = global_config['model_type']
with tqdm(
total=len(val_loader),
bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
ncols=80) as t:
for batch_id, batch in enumerate(val_loader):
images = batch[0]
try:
preds, = exe.run(compiled_test_program,
feed={test_feed_names[0]: images},
fetch_list=test_fetch_list)
except:
preds, _ = exe.run(compiled_test_program,
feed={test_feed_names[0]: images},
fetch_list=test_fetch_list)
batch_numpy = []
for item in batch:
batch_numpy.append(np.array(item))
if model_type == 'det':
preds_map = {'maps': preds}
post_result = post_process_class(preds_map, batch_numpy[1])
eval_class(post_result, batch_numpy)
elif model_type == 'rec':
post_result = post_process_class(preds, batch_numpy[1])
eval_class(post_result, batch_numpy)
t.update()
metric = eval_class.get_metric()
logger.info('metric eval ***************')
for k, v in metric.items():
logger.info('{}:{}'.format(k, v))
if model_type == 'det':
return metric['hmean']
elif model_type == 'rec':
return metric['acc']
return metric
def main():
rank_id = paddle.distributed.get_rank()
if args.devices == 'gpu':
place = paddle.CUDAPlace(rank_id)
paddle.set_device('gpu')
else:
place = paddle.CPUPlace()
paddle.set_device('cpu')
global all_config, global_config
all_config = load_slim_config(args.config_path)
if "Global" not in all_config:
raise KeyError(f"Key 'Global' not found in config file. \n{all_config}")
global_config = all_config["Global"]
gpu_num = paddle.distributed.get_world_size()
train_dataloader = build_dataloader(all_config, 'Train', args.devices,
logger)
global val_loader
val_loader = build_dataloader(all_config, 'Eval', args.devices, logger)
if isinstance(all_config['TrainConfig']['learning_rate'],
dict) and all_config['TrainConfig']['learning_rate'][
'type'] == 'CosineAnnealingDecay':
steps = len(train_dataloader) * all_config['TrainConfig']['epochs']
all_config['TrainConfig']['learning_rate']['T_max'] = steps
print('total training steps:', steps)
global_config['input_name'] = get_feed_vars(
global_config['model_dir'], global_config['model_filename'],
global_config['params_filename'])
ac = AutoCompression(
model_dir=global_config['model_dir'],
model_filename=global_config['model_filename'],
params_filename=global_config['params_filename'],
save_dir=args.save_dir,
config=all_config,
train_dataloader=reader_wrapper(train_dataloader,
global_config['input_name']),
eval_callback=eval_function if rank_id == 0 else None,
eval_dataloader=reader_wrapper(val_loader, global_config['input_name']))
ac.compress()
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
args = parser.parse_args()
main()