PaddleOCR/doc/doc_ch/algorithm_det_db.md

3.1 KiB
Raw Blame History

DB

1. 算法简介

论文信息:

Real-time Scene Text Detection with Differentiable Binarization Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang AAAI, 2020

在ICDAR2015文本检测公开数据集上算法复现效果如下

模型 骨干网络 配置文件 precision recall Hmean 下载链接
DB ResNet50_vd configs/det/det_r50_vd_db.yml 86.41% 78.72% 82.38% 训练模型
DB MobileNetV3 configs/det/det_mv3_db.yml 77.29% 73.08% 75.12% 训练模型

2. 环境配置

请先参考《运行环境准备》配置PaddleOCR运行环境参考《项目克隆》克隆项目代码。

3. 模型训练、评估、预测

请参考文本检测训练教程。PaddleOCR对代码进行了模块化训练不同的检测模型只需要更换配置文件即可。

4. 推理部署

4.1 Python推理

首先将DB文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例 模型下载地址 ),可以使用如下命令进行转换:

python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_db

DB文本检测模型推理可以执行如下命令

python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/"

可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:

注意由于ICDAR2015数据集只有1000张训练图像且主要针对英文场景所以上述模型对中文文本图像检测效果会比较差。

4.2 C++推理

敬请期待

4.3 Serving服务化部署

敬请期待

4.4 更多推理部署

敬请期待

5. FAQ

引用

@inproceedings{liao2020real,
  title={Real-time scene text detection with differentiable binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  number={07},
  pages={11474--11481},
  year={2020}
}