PaddleOCR/benchmark/PaddleOCR_DBNet/models/backbone/resnet.py

367 lines
12 KiB
Python

import math
import paddle
from paddle import nn
BatchNorm2d = nn.BatchNorm2D
__all__ = [
"ResNet",
"resnet18",
"resnet34",
"resnet50",
"resnet101",
"deformable_resnet18",
"deformable_resnet50",
"resnet152",
]
model_urls = {
"resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth",
"resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth",
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
}
def constant_init(module, constant, bias=0):
module.weight = paddle.create_parameter(
shape=module.weight.shape,
dtype="float32",
default_initializer=paddle.nn.initializer.Constant(constant),
)
if hasattr(module, "bias"):
module.bias = paddle.create_parameter(
shape=module.bias.shape,
dtype="float32",
default_initializer=paddle.nn.initializer.Constant(bias),
)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2D(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias_attr=False
)
class BasicBlock(nn.Layer):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None):
super(BasicBlock, self).__init__()
self.with_dcn = dcn is not None
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes, momentum=0.1)
self.relu = nn.ReLU()
self.with_modulated_dcn = False
if not self.with_dcn:
self.conv2 = nn.Conv2D(
planes, planes, kernel_size=3, padding=1, bias_attr=False
)
else:
from paddle.version.ops import DeformConv2D
deformable_groups = dcn.get("deformable_groups", 1)
offset_channels = 18
self.conv2_offset = nn.Conv2D(
planes, deformable_groups * offset_channels, kernel_size=3, padding=1
)
self.conv2 = DeformConv2D(
planes, planes, kernel_size=3, padding=1, bias_attr=False
)
self.bn2 = BatchNorm2d(planes, momentum=0.1)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# out = self.conv2(out)
if not self.with_dcn:
out = self.conv2(out)
else:
offset = self.conv2_offset(out)
out = self.conv2(out, offset)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Layer):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, dcn=None):
super(Bottleneck, self).__init__()
self.with_dcn = dcn is not None
self.conv1 = nn.Conv2D(inplanes, planes, kernel_size=1, bias_attr=False)
self.bn1 = BatchNorm2d(planes, momentum=0.1)
self.with_modulated_dcn = False
if not self.with_dcn:
self.conv2 = nn.Conv2D(
planes, planes, kernel_size=3, stride=stride, padding=1, bias_attr=False
)
else:
deformable_groups = dcn.get("deformable_groups", 1)
from paddle.vision.ops import DeformConv2D
offset_channels = 18
self.conv2_offset = nn.Conv2D(
planes,
deformable_groups * offset_channels,
stride=stride,
kernel_size=3,
padding=1,
)
self.conv2 = DeformConv2D(
planes, planes, kernel_size=3, padding=1, stride=stride, bias_attr=False
)
self.bn2 = BatchNorm2d(planes, momentum=0.1)
self.conv3 = nn.Conv2D(planes, planes * 4, kernel_size=1, bias_attr=False)
self.bn3 = BatchNorm2d(planes * 4, momentum=0.1)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
self.dcn = dcn
self.with_dcn = dcn is not None
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# out = self.conv2(out)
if not self.with_dcn:
out = self.conv2(out)
else:
offset = self.conv2_offset(out)
out = self.conv2(out, offset)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Layer):
def __init__(self, block, layers, in_channels=3, dcn=None):
self.dcn = dcn
self.inplanes = 64
super(ResNet, self).__init__()
self.out_channels = []
self.conv1 = nn.Conv2D(
in_channels, 64, kernel_size=7, stride=2, padding=3, bias_attr=False
)
self.bn1 = BatchNorm2d(64, momentum=0.1)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dcn=dcn)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dcn=dcn)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dcn=dcn)
if self.dcn is not None:
for m in self.modules():
if isinstance(m, Bottleneck) or isinstance(m, BasicBlock):
if hasattr(m, "conv2_offset"):
constant_init(m.conv2_offset, 0)
def _make_layer(self, block, planes, blocks, stride=1, dcn=None):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2D(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias_attr=False,
),
BatchNorm2d(planes * block.expansion, momentum=0.1),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, dcn=dcn))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dcn=dcn))
self.out_channels.append(planes * block.expansion)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x2 = self.layer1(x)
x3 = self.layer2(x2)
x4 = self.layer3(x3)
x5 = self.layer4(x4)
return x2, x3, x4, x5
def load_torch_params(paddle_model, torch_patams):
paddle_params = paddle_model.state_dict()
fc_names = ["classifier"]
for key, torch_value in torch_patams.items():
if "num_batches_tracked" in key:
continue
key = (
key.replace("running_var", "_variance")
.replace("running_mean", "_mean")
.replace("module.", "")
)
torch_value = torch_value.detach().cpu().numpy()
if key in paddle_params:
flag = [i in key for i in fc_names]
if any(flag) and "weight" in key: # ignore bias
new_shape = [1, 0] + list(range(2, torch_value.ndim))
print(
f"name: {key}, ori shape: {torch_value.shape}, new shape: {torch_value.transpose(new_shape).shape}"
)
torch_value = torch_value.transpose(new_shape)
paddle_params[key] = torch_value
else:
print(f"{key} not in paddle")
paddle_model.set_state_dict(paddle_params)
def load_models(model, model_name):
import torch.utils.model_zoo as model_zoo
torch_patams = model_zoo.load_url(model_urls[model_name])
load_torch_params(model, torch_patams)
def resnet18(pretrained=True, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
print("load from imagenet")
load_models(model, "resnet18")
return model
def deformable_resnet18(pretrained=True, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], dcn=dict(deformable_groups=1), **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
print("load from imagenet")
model.load_state_dict(model_zoo.load_url(model_urls["resnet18"]), strict=False)
return model
def resnet34(pretrained=True, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
model.load_state_dict(model_zoo.load_url(model_urls["resnet34"]), strict=False)
return model
def resnet50(pretrained=True, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
load_models(model, "resnet50")
return model
def deformable_resnet50(pretrained=True, **kwargs):
"""Constructs a ResNet-50 model with deformable conv.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], dcn=dict(deformable_groups=1), **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
model.load_state_dict(model_zoo.load_url(model_urls["resnet50"]), strict=False)
return model
def resnet101(pretrained=True, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
model.load_state_dict(model_zoo.load_url(model_urls["resnet101"]), strict=False)
return model
def resnet152(pretrained=True, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
assert (
kwargs.get("in_channels", 3) == 3
), "in_channels must be 3 whem pretrained is True"
model.load_state_dict(model_zoo.load_url(model_urls["resnet152"]), strict=False)
return model
if __name__ == "__main__":
x = paddle.zeros([2, 3, 640, 640])
net = resnet50(pretrained=True)
y = net(x)
for u in y:
print(u.shape)
print(net.out_channels)