PaddleOCR/tools/train.py

271 lines
9.7 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))
import yaml
import paddle
import paddle.distributed as dist
from ppocr.data import build_dataloader, set_signal_handlers
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import set_seed
from ppocr.modeling.architectures import apply_to_static
import tools.program as program
import tools.naive_sync_bn as naive_sync_bn
dist.get_world_size()
def main(config, device, logger, vdl_writer, seed):
# init dist environment
if config["Global"]["distributed"]:
dist.init_parallel_env()
global_config = config["Global"]
# build dataloader
set_signal_handlers()
train_dataloader = build_dataloader(config, "Train", device, logger, seed)
if len(train_dataloader) == 0:
logger.error(
"No Images in train dataset, please ensure\n"
+ "\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n"
+ "\t2. The annotation file and path in the configuration file are provided normally."
)
return
if config["Eval"]:
valid_dataloader = build_dataloader(config, "Eval", device, logger, seed)
else:
valid_dataloader = None
step_pre_epoch = len(train_dataloader)
# build post process
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
if config["Architecture"]["algorithm"] in [
"Distillation",
]: # distillation model
for key in config["Architecture"]["Models"]:
if (
config["Architecture"]["Models"][key]["Head"]["name"] == "MultiHead"
): # for multi head
if config["PostProcess"]["name"] == "DistillationSARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "DistillationNRTRLabelDecode":
char_num = char_num - 3
out_channels_list = {}
out_channels_list["CTCLabelDecode"] = char_num
# update SARLoss params
if (
list(config["Loss"]["loss_config_list"][-1].keys())[0]
== "DistillationSARLoss"
):
config["Loss"]["loss_config_list"][-1]["DistillationSARLoss"][
"ignore_index"
] = (char_num + 1)
out_channels_list["SARLabelDecode"] = char_num + 2
elif any(
"DistillationNRTRLoss" in d
for d in config["Loss"]["loss_config_list"]
):
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Models"][key]["Head"][
"out_channels_list"
] = out_channels_list
else:
config["Architecture"]["Models"][key]["Head"][
"out_channels"
] = char_num
elif config["Architecture"]["Head"]["name"] == "MultiHead": # for multi head
if config["PostProcess"]["name"] == "SARLabelDecode":
char_num = char_num - 2
if config["PostProcess"]["name"] == "NRTRLabelDecode":
char_num = char_num - 3
out_channels_list = {}
out_channels_list["CTCLabelDecode"] = char_num
# update SARLoss params
if list(config["Loss"]["loss_config_list"][1].keys())[0] == "SARLoss":
if config["Loss"]["loss_config_list"][1]["SARLoss"] is None:
config["Loss"]["loss_config_list"][1]["SARLoss"] = {
"ignore_index": char_num + 1
}
else:
config["Loss"]["loss_config_list"][1]["SARLoss"]["ignore_index"] = (
char_num + 1
)
out_channels_list["SARLabelDecode"] = char_num + 2
elif list(config["Loss"]["loss_config_list"][1].keys())[0] == "NRTRLoss":
out_channels_list["NRTRLabelDecode"] = char_num + 3
config["Architecture"]["Head"]["out_channels_list"] = out_channels_list
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
if config["PostProcess"]["name"] == "SARLabelDecode": # for SAR model
config["Loss"]["ignore_index"] = char_num - 1
model = build_model(config["Architecture"])
use_sync_bn = config["Global"].get("use_sync_bn", False)
if use_sync_bn:
if config["Global"].get("use_npu", False):
naive_sync_bn.convert_syncbn(model)
else:
model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger.info("convert_sync_batchnorm")
model = apply_to_static(model, config, logger)
# build loss
loss_class = build_loss(config["Loss"])
# build optim
optimizer, lr_scheduler = build_optimizer(
config["Optimizer"],
epochs=config["Global"]["epoch_num"],
step_each_epoch=len(train_dataloader),
model=model,
)
# build metric
eval_class = build_metric(config["Metric"])
logger.info("train dataloader has {} iters".format(len(train_dataloader)))
if valid_dataloader is not None:
logger.info("valid dataloader has {} iters".format(len(valid_dataloader)))
use_amp = config["Global"].get("use_amp", False)
amp_level = config["Global"].get("amp_level", "O2")
amp_dtype = config["Global"].get("amp_dtype", "float16")
amp_custom_black_list = config["Global"].get("amp_custom_black_list", [])
amp_custom_white_list = config["Global"].get("amp_custom_white_list", [])
if os.path.exists(
os.path.join(config["Global"]["save_model_dir"], "train_result.json")
):
try:
os.remove(
os.path.join(config["Global"]["save_model_dir"], "train_result.json")
)
except:
pass
if use_amp:
AMP_RELATED_FLAGS_SETTING = {
"FLAGS_max_inplace_grad_add": 8,
}
if paddle.is_compiled_with_cuda():
AMP_RELATED_FLAGS_SETTING.update(
{
"FLAGS_cudnn_batchnorm_spatial_persistent": 1,
"FLAGS_gemm_use_half_precision_compute_type": 0,
}
)
paddle.set_flags(AMP_RELATED_FLAGS_SETTING)
scale_loss = config["Global"].get("scale_loss", 1.0)
use_dynamic_loss_scaling = config["Global"].get(
"use_dynamic_loss_scaling", False
)
scaler = paddle.amp.GradScaler(
init_loss_scaling=scale_loss,
use_dynamic_loss_scaling=use_dynamic_loss_scaling,
)
if amp_level == "O2":
model, optimizer = paddle.amp.decorate(
models=model,
optimizers=optimizer,
level=amp_level,
master_weight=True,
dtype=amp_dtype,
)
else:
scaler = None
# load pretrain model
pre_best_model_dict = load_model(
config, model, optimizer, config["Architecture"]["model_type"]
)
if config["Global"]["distributed"]:
model = paddle.DataParallel(model)
# start train
program.train(
config,
train_dataloader,
valid_dataloader,
device,
model,
loss_class,
optimizer,
lr_scheduler,
post_process_class,
eval_class,
pre_best_model_dict,
logger,
step_pre_epoch,
vdl_writer,
scaler,
amp_level,
amp_custom_black_list,
amp_custom_white_list,
amp_dtype,
)
def test_reader(config, device, logger):
loader = build_dataloader(config, "Train", device, logger)
import time
starttime = time.time()
count = 0
try:
for data in loader():
count += 1
if count % 1 == 0:
batch_time = time.time() - starttime
starttime = time.time()
logger.info(
"reader: {}, {}, {}".format(count, len(data[0]), batch_time)
)
except Exception as e:
logger.info(e)
logger.info("finish reader: {}, Success!".format(count))
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess(is_train=True)
seed = config["Global"]["seed"] if "seed" in config["Global"] else 1024
set_seed(seed)
main(config, device, logger, vdl_writer, seed)
# test_reader(config, device, logger)