179 lines
7.3 KiB
Python
179 lines
7.3 KiB
Python
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
import paddle
|
|
from paddle import nn, ParamAttr
|
|
from paddle.nn import functional as F
|
|
import numpy as np
|
|
import itertools
|
|
|
|
|
|
def grid_sample(input, grid, canvas=None):
|
|
input.stop_gradient = False
|
|
output = F.grid_sample(input, grid)
|
|
if canvas is None:
|
|
return output
|
|
else:
|
|
input_mask = paddle.ones(shape=input.shape)
|
|
output_mask = F.grid_sample(input_mask, grid)
|
|
padded_output = output * output_mask + canvas * (1 - output_mask)
|
|
return padded_output
|
|
|
|
|
|
# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
|
|
def compute_partial_repr(input_points, control_points):
|
|
N = input_points.shape[0]
|
|
M = control_points.shape[0]
|
|
pairwise_diff = paddle.reshape(
|
|
input_points, shape=[N, 1, 2]) - paddle.reshape(
|
|
control_points, shape=[1, M, 2])
|
|
# original implementation, very slow
|
|
# pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
|
|
pairwise_diff_square = pairwise_diff * pairwise_diff
|
|
pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
|
|
1]
|
|
repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
|
|
# fix numerical error for 0 * log(0), substitute all nan with 0
|
|
mask = repr_matrix != repr_matrix
|
|
repr_matrix[mask] = 0
|
|
return repr_matrix
|
|
|
|
|
|
# output_ctrl_pts are specified, according to our task.
|
|
def build_output_control_points(num_control_points, margins):
|
|
margin_x, margin_y = margins
|
|
num_ctrl_pts_per_side = num_control_points // 2
|
|
ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
|
|
ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
|
|
ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
|
|
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
|
|
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
|
|
# ctrl_pts_top = ctrl_pts_top[1:-1,:]
|
|
# ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:]
|
|
output_ctrl_pts_arr = np.concatenate(
|
|
[ctrl_pts_top, ctrl_pts_bottom], axis=0)
|
|
output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
|
|
return output_ctrl_pts
|
|
|
|
|
|
class TPSSpatialTransformer(nn.Layer):
|
|
def __init__(self,
|
|
output_image_size=None,
|
|
num_control_points=None,
|
|
margins=None):
|
|
super(TPSSpatialTransformer, self).__init__()
|
|
self.output_image_size = output_image_size
|
|
self.num_control_points = num_control_points
|
|
self.margins = margins
|
|
|
|
self.target_height, self.target_width = output_image_size
|
|
target_control_points = build_output_control_points(num_control_points,
|
|
margins)
|
|
N = num_control_points
|
|
# N = N - 4
|
|
|
|
# create padded kernel matrix
|
|
forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
|
|
target_control_partial_repr = compute_partial_repr(
|
|
target_control_points, target_control_points)
|
|
target_control_partial_repr = paddle.cast(target_control_partial_repr,
|
|
forward_kernel.dtype)
|
|
forward_kernel[:N, :N] = target_control_partial_repr
|
|
forward_kernel[:N, -3] = 1
|
|
forward_kernel[-3, :N] = 1
|
|
target_control_points = paddle.cast(target_control_points,
|
|
forward_kernel.dtype)
|
|
forward_kernel[:N, -2:] = target_control_points
|
|
forward_kernel[-2:, :N] = paddle.transpose(
|
|
target_control_points, perm=[1, 0])
|
|
# compute inverse matrix
|
|
inverse_kernel = paddle.inverse(forward_kernel)
|
|
|
|
# create target cordinate matrix
|
|
HW = self.target_height * self.target_width
|
|
target_coordinate = list(
|
|
itertools.product(
|
|
range(self.target_height), range(self.target_width)))
|
|
target_coordinate = paddle.to_tensor(target_coordinate) # HW x 2
|
|
Y, X = paddle.split(
|
|
target_coordinate, target_coordinate.shape[1], axis=1)
|
|
#Y, X = target_coordinate.split(1, dim = 1)
|
|
Y = Y / (self.target_height - 1)
|
|
X = X / (self.target_width - 1)
|
|
target_coordinate = paddle.concat(
|
|
[X, Y], axis=1) # convert from (y, x) to (x, y)
|
|
target_coordinate_partial_repr = compute_partial_repr(
|
|
target_coordinate, target_control_points)
|
|
target_coordinate_repr = paddle.concat(
|
|
[
|
|
target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
|
|
target_coordinate
|
|
],
|
|
axis=1)
|
|
|
|
# register precomputed matrices
|
|
self.inverse_kernel = inverse_kernel
|
|
self.padding_matrix = paddle.zeros(shape=[3, 2])
|
|
self.target_coordinate_repr = target_coordinate_repr
|
|
self.target_control_points = target_control_points
|
|
|
|
def forward(self, input, source_control_points):
|
|
assert source_control_points.ndimension() == 3
|
|
assert source_control_points.shape[1] == self.num_control_points
|
|
assert source_control_points.shape[2] == 2
|
|
batch_size = source_control_points.shape[0]
|
|
|
|
self.padding_matrix = paddle.expand(
|
|
self.padding_matrix, shape=[batch_size, 3, 2])
|
|
Y = paddle.concat([source_control_points, self.padding_matrix], 1)
|
|
mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
|
|
source_coordinate = paddle.matmul(self.target_coordinate_repr,
|
|
mapping_matrix)
|
|
|
|
grid = paddle.reshape(
|
|
source_coordinate,
|
|
shape=[-1, self.target_height, self.target_width, 2])
|
|
grid = paddle.clip(grid, 0,
|
|
1) # the source_control_points may be out of [0, 1].
|
|
# the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
|
|
# grid = 2.0 * grid - 1.0
|
|
output_maps = grid_sample(input, grid, canvas=None)
|
|
return output_maps, source_coordinate
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from stn import STN
|
|
in_planes = 3
|
|
num_ctrlpoints = 20
|
|
np.random.seed(100)
|
|
activation = 'none' # 'sigmoid'
|
|
stn_head = STN(in_planes, num_ctrlpoints, activation)
|
|
data = np.random.randn(10, 3, 32, 64).astype("float32")
|
|
input = paddle.to_tensor(data)
|
|
#input = paddle.randn([10, 3, 32, 64])
|
|
control_points = stn_head(input)
|
|
#print("control points:", control_points)
|
|
#input = paddle.randn(shape=[10,3,32,100])
|
|
tps = TPSSpatialTransformer(
|
|
output_image_size=[32, 320],
|
|
num_control_points=20,
|
|
margins=[0.05, 0.05])
|
|
out = tps(input, control_points[1])
|
|
print("out 0 :", out[0].shape)
|
|
print("out 1:", out[1].shape)
|