PaddleOCR/deploy/cpp_infer/src/ocr_cls.cpp

111 lines
3.6 KiB
C++

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <include/ocr_cls.h>
namespace PaddleOCR {
cv::Mat Classifier::Run(cv::Mat &img) {
cv::Mat src_img;
img.copyTo(src_img);
cv::Mat resize_img;
std::vector<int> rec_image_shape = {3, 48, 192};
int index = 0;
float wh_ratio = float(img.cols) / float(img.rows);
this->resize_op_.Run(img, resize_img, rec_image_shape);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
this->permute_op_.Run(&resize_img, input.data());
// Inference.
if (this->use_zero_copy_run_) {
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->copy_from_cpu(input.data());
this->predictor_->ZeroCopyRun();
} else {
paddle::PaddleTensor input_t;
input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
input_t.data =
paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
input_t.dtype = PaddleDType::FLOAT32;
std::vector<paddle::PaddleTensor> outputs;
this->predictor_->Run({input_t}, &outputs, 1);
}
std::vector<float> softmax_out;
std::vector<int64_t> label_out;
auto output_names = this->predictor_->GetOutputNames();
auto softmax_out_t = this->predictor_->GetOutputTensor(output_names[0]);
auto label_out_t = this->predictor_->GetOutputTensor(output_names[1]);
auto softmax_shape_out = softmax_out_t->shape();
auto label_shape_out = label_out_t->shape();
int softmax_out_num =
std::accumulate(softmax_shape_out.begin(), softmax_shape_out.end(), 1,
std::multiplies<int>());
int label_out_num =
std::accumulate(label_shape_out.begin(), label_shape_out.end(), 1,
std::multiplies<int>());
softmax_out.resize(softmax_out_num);
label_out.resize(label_out_num);
softmax_out_t->copy_to_cpu(softmax_out.data());
label_out_t->copy_to_cpu(label_out.data());
int label = label_out[0];
float score = softmax_out[label];
// std::cout << "\nlabel "<<label<<" score: "<<score;
if (label % 2 == 1 && score > this->cls_thresh) {
cv::rotate(src_img, src_img, 1);
}
return src_img;
}
void Classifier::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
config.SetModel(model_dir + "/model", model_dir + "/params");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
config.EnableMKLDNN();
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// false for zero copy tensor
config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
// true for multiple input
config.SwitchSpecifyInputNames(true);
config.SwitchIrOptim(true);
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = CreatePaddlePredictor(config);
}
} // namespace PaddleOCR