zhoujun 68099c2d5b
add db for benchmark (#8959)
* Add custom detection and recognition model usage instructions in re

* update

* Add custom detection and recognition model usage instructions in re

* add db net for benchmark

* rename benckmark to PaddleOCR_benchmark

* add addict to req

* rename
2023-02-08 15:52:30 +08:00

351 lines
13 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from collections import namedtuple
from . import rrc_evaluation_funcs
import Polygon as plg
import numpy as np
def default_evaluation_params():
"""
default_evaluation_params: Default parameters to use for the validation and evaluation.
"""
return {
'IOU_CONSTRAINT': 0.5,
'AREA_PRECISION_CONSTRAINT': 0.5,
'GT_SAMPLE_NAME_2_ID': 'gt_img_([0-9]+).txt',
'DET_SAMPLE_NAME_2_ID': 'res_img_([0-9]+).txt',
'LTRB':
False, # LTRB:2points(left,top,right,bottom) or 4 points(x1,y1,x2,y2,x3,y3,x4,y4)
'CRLF': False, # Lines are delimited by Windows CRLF format
'CONFIDENCES':
False, # Detections must include confidence value. AP will be calculated
'PER_SAMPLE_RESULTS':
True # Generate per sample results and produce data for visualization
}
def validate_data(gtFilePath, submFilePath, evaluationParams):
"""
Method validate_data: validates that all files in the results folder are correct (have the correct name contents).
Validates also that there are no missing files in the folder.
If some error detected, the method raises the error
"""
gt = rrc_evaluation_funcs.load_folder_file(
gtFilePath, evaluationParams['GT_SAMPLE_NAME_2_ID'])
subm = rrc_evaluation_funcs.load_folder_file(
submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True)
# Validate format of GroundTruth
for k in gt:
rrc_evaluation_funcs.validate_lines_in_file(
k, gt[k], evaluationParams['CRLF'], evaluationParams['LTRB'], True)
# Validate format of results
for k in subm:
if (k in gt) == False:
raise Exception("The sample %s not present in GT" % k)
rrc_evaluation_funcs.validate_lines_in_file(
k, subm[k], evaluationParams['CRLF'], evaluationParams['LTRB'],
False, evaluationParams['CONFIDENCES'])
def evaluate_method(gtFilePath, submFilePath, evaluationParams):
"""
Method evaluate_method: evaluate method and returns the results
Results. Dictionary with the following values:
- method (required) Global method metrics. Ex: { 'Precision':0.8,'Recall':0.9 }
- samples (optional) Per sample metrics. Ex: {'sample1' : { 'Precision':0.8,'Recall':0.9 } , 'sample2' : { 'Precision':0.8,'Recall':0.9 }
"""
def polygon_from_points(points):
"""
Returns a Polygon object to use with the Polygon2 class from a list of 8 points: x1,y1,x2,y2,x3,y3,x4,y4
"""
resBoxes = np.empty([1, 8], dtype='int32')
resBoxes[0, 0] = int(points[0])
resBoxes[0, 4] = int(points[1])
resBoxes[0, 1] = int(points[2])
resBoxes[0, 5] = int(points[3])
resBoxes[0, 2] = int(points[4])
resBoxes[0, 6] = int(points[5])
resBoxes[0, 3] = int(points[6])
resBoxes[0, 7] = int(points[7])
pointMat = resBoxes[0].reshape([2, 4]).T
return plg.Polygon(pointMat)
def rectangle_to_polygon(rect):
resBoxes = np.empty([1, 8], dtype='int32')
resBoxes[0, 0] = int(rect.xmin)
resBoxes[0, 4] = int(rect.ymax)
resBoxes[0, 1] = int(rect.xmin)
resBoxes[0, 5] = int(rect.ymin)
resBoxes[0, 2] = int(rect.xmax)
resBoxes[0, 6] = int(rect.ymin)
resBoxes[0, 3] = int(rect.xmax)
resBoxes[0, 7] = int(rect.ymax)
pointMat = resBoxes[0].reshape([2, 4]).T
return plg.Polygon(pointMat)
def rectangle_to_points(rect):
points = [
int(rect.xmin), int(rect.ymax), int(rect.xmax), int(rect.ymax),
int(rect.xmax), int(rect.ymin), int(rect.xmin), int(rect.ymin)
]
return points
def get_union(pD, pG):
areaA = pD.area()
areaB = pG.area()
return areaA + areaB - get_intersection(pD, pG)
def get_intersection_over_union(pD, pG):
try:
return get_intersection(pD, pG) / get_union(pD, pG)
except:
return 0
def get_intersection(pD, pG):
pInt = pD & pG
if len(pInt) == 0:
return 0
return pInt.area()
def compute_ap(confList, matchList, numGtCare):
correct = 0
AP = 0
if len(confList) > 0:
confList = np.array(confList)
matchList = np.array(matchList)
sorted_ind = np.argsort(-confList)
confList = confList[sorted_ind]
matchList = matchList[sorted_ind]
for n in range(len(confList)):
match = matchList[n]
if match:
correct += 1
AP += float(correct) / (n + 1)
if numGtCare > 0:
AP /= numGtCare
return AP
perSampleMetrics = {}
matchedSum = 0
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
gt = rrc_evaluation_funcs.load_folder_file(
gtFilePath, evaluationParams['GT_SAMPLE_NAME_2_ID'])
subm = rrc_evaluation_funcs.load_folder_file(
submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True)
numGlobalCareGt = 0
numGlobalCareDet = 0
arrGlobalConfidences = []
arrGlobalMatches = []
for resFile in gt:
gtFile = gt[resFile] # rrc_evaluation_funcs.decode_utf8(gt[resFile])
recall = 0
precision = 0
hmean = 0
detMatched = 0
iouMat = np.empty([1, 1])
gtPols = []
detPols = []
gtPolPoints = []
detPolPoints = []
# Array of Ground Truth Polygons' keys marked as don't Care
gtDontCarePolsNum = []
# Array of Detected Polygons' matched with a don't Care GT
detDontCarePolsNum = []
pairs = []
detMatchedNums = []
arrSampleConfidences = []
arrSampleMatch = []
sampleAP = 0
evaluationLog = ""
pointsList, _, transcriptionsList = rrc_evaluation_funcs.get_tl_line_values_from_file_contents(
gtFile, evaluationParams['CRLF'], evaluationParams['LTRB'], True,
False)
for n in range(len(pointsList)):
points = pointsList[n]
transcription = transcriptionsList[n]
dontCare = transcription == "###"
if evaluationParams['LTRB']:
gtRect = Rectangle(*points)
gtPol = rectangle_to_polygon(gtRect)
else:
gtPol = polygon_from_points(points)
gtPols.append(gtPol)
gtPolPoints.append(points)
if dontCare:
gtDontCarePolsNum.append(len(gtPols) - 1)
evaluationLog += "GT polygons: " + str(len(gtPols)) + (
" (" + str(len(gtDontCarePolsNum)) + " don't care)\n"
if len(gtDontCarePolsNum) > 0 else "\n")
if resFile in subm:
detFile = subm[
resFile] # rrc_evaluation_funcs.decode_utf8(subm[resFile])
pointsList, confidencesList, _ = rrc_evaluation_funcs.get_tl_line_values_from_file_contents(
detFile, evaluationParams['CRLF'], evaluationParams['LTRB'],
False, evaluationParams['CONFIDENCES'])
for n in range(len(pointsList)):
points = pointsList[n]
if evaluationParams['LTRB']:
detRect = Rectangle(*points)
detPol = rectangle_to_polygon(detRect)
else:
detPol = polygon_from_points(points)
detPols.append(detPol)
detPolPoints.append(points)
if len(gtDontCarePolsNum) > 0:
for dontCarePol in gtDontCarePolsNum:
dontCarePol = gtPols[dontCarePol]
intersected_area = get_intersection(dontCarePol, detPol)
pdDimensions = detPol.area()
precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions
if (precision >
evaluationParams['AREA_PRECISION_CONSTRAINT']):
detDontCarePolsNum.append(len(detPols) - 1)
break
evaluationLog += "DET polygons: " + str(len(detPols)) + (
" (" + str(len(detDontCarePolsNum)) + " don't care)\n"
if len(detDontCarePolsNum) > 0 else "\n")
if len(gtPols) > 0 and len(detPols) > 0:
# Calculate IoU and precision matrixs
outputShape = [len(gtPols), len(detPols)]
iouMat = np.empty(outputShape)
gtRectMat = np.zeros(len(gtPols), np.int8)
detRectMat = np.zeros(len(detPols), np.int8)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
pG = gtPols[gtNum]
pD = detPols[detNum]
iouMat[gtNum, detNum] = get_intersection_over_union(pD,
pG)
for gtNum in range(len(gtPols)):
for detNum in range(len(detPols)):
if gtRectMat[gtNum] == 0 and detRectMat[
detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum:
if iouMat[gtNum, detNum] > evaluationParams[
'IOU_CONSTRAINT']:
gtRectMat[gtNum] = 1
detRectMat[detNum] = 1
detMatched += 1
pairs.append({'gt': gtNum, 'det': detNum})
detMatchedNums.append(detNum)
evaluationLog += "Match GT #" + str(
gtNum) + " with Det #" + str(detNum) + "\n"
if evaluationParams['CONFIDENCES']:
for detNum in range(len(detPols)):
if detNum not in detDontCarePolsNum:
# we exclude the don't care detections
match = detNum in detMatchedNums
arrSampleConfidences.append(confidencesList[detNum])
arrSampleMatch.append(match)
arrGlobalConfidences.append(confidencesList[detNum])
arrGlobalMatches.append(match)
numGtCare = (len(gtPols) - len(gtDontCarePolsNum))
numDetCare = (len(detPols) - len(detDontCarePolsNum))
if numGtCare == 0:
recall = float(1)
precision = float(0) if numDetCare > 0 else float(1)
sampleAP = precision
else:
recall = float(detMatched) / numGtCare
precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare
if evaluationParams['CONFIDENCES'] and evaluationParams[
'PER_SAMPLE_RESULTS']:
sampleAP = compute_ap(arrSampleConfidences, arrSampleMatch,
numGtCare)
hmean = 0 if (precision + recall) == 0 else 2.0 * precision * recall / (
precision + recall)
matchedSum += detMatched
numGlobalCareGt += numGtCare
numGlobalCareDet += numDetCare
if evaluationParams['PER_SAMPLE_RESULTS']:
perSampleMetrics[resFile] = {
'precision': precision,
'recall': recall,
'hmean': hmean,
'pairs': pairs,
'AP': sampleAP,
'iouMat': [] if len(detPols) > 100 else iouMat.tolist(),
'gtPolPoints': gtPolPoints,
'detPolPoints': detPolPoints,
'gtDontCare': gtDontCarePolsNum,
'detDontCare': detDontCarePolsNum,
'evaluationParams': evaluationParams,
'evaluationLog': evaluationLog
}
# Compute MAP and MAR
AP = 0
if evaluationParams['CONFIDENCES']:
AP = compute_ap(arrGlobalConfidences, arrGlobalMatches, numGlobalCareGt)
methodRecall = 0 if numGlobalCareGt == 0 else float(
matchedSum) / numGlobalCareGt
methodPrecision = 0 if numGlobalCareDet == 0 else float(
matchedSum) / numGlobalCareDet
methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * methodRecall * methodPrecision / (
methodRecall + methodPrecision)
methodMetrics = {
'precision': methodPrecision,
'recall': methodRecall,
'hmean': methodHmean,
'AP': AP
}
resDict = {
'calculated': True,
'Message': '',
'method': methodMetrics,
'per_sample': perSampleMetrics
}
return resDict
def cal_recall_precison_f1(gt_path, result_path, show_result=False):
p = {'g': gt_path, 's': result_path}
result = rrc_evaluation_funcs.main_evaluation(p, default_evaluation_params,
validate_data,
evaluate_method, show_result)
return result['method']